Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Top Med Chem ; 21(13): 1186-1197, 2021.
Article in English | MEDLINE | ID: mdl-34323186

ABSTRACT

BACKGROUND: Tuberculosis (TB) has been a challenging disease worldwide, especially for the neglected poor populations. Presently, there are approximately 2 billion people infected with TB worldwide and 10 million people in the world fell ill with active TB, leading to 1.5 million deaths. INTRODUCTION: The classic treatment is extensive and the drug- and multi-drug resistance of Mycobacterium tuberculosis has been a threat to the efficacy of the drugs currently used. Therefore, the rational design of new anti-TB candidates is urgently needed. METHODS: With the aim of contributing to face this challenge, 78 compounds have been proposed based on SBDD (Structure-Based Drug Design) strategies applied to target the M. tuberculosis phosphopantetheine adenylyltransferase (MtPPAT) enzyme. Ligand-Based Drug Design (LBDD) strategies were also used for establishing Structure-Activity Relationships (SAR) and for optimizing the structures. MtPPAT is important for the biosynthesis of coenzyme A (CoA) and it has been studied recently toward the discovery of new inhibitors. RESULTS: After docking simulations and enthalpy calculations, the interaction of selected compounds with MtPPAT was found to be energetically favorable. The most promising compounds were then synthesized and submitted to anti-M. tuberculosis and MtPPAT inhibition assays. CONCLUSION: One of the compounds synthesized (MCP163), showed the highest activity in both of these assays.


Subject(s)
Antitubercular Agents/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/drug effects , Nucleotidyltransferases/antagonists & inhibitors , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/enzymology , Nucleotidyltransferases/metabolism
2.
Eur J Med Chem ; 137: 126-138, 2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28582669

ABSTRACT

New anti-tuberculosis (anti-TB) drugs are urgently needed to battle drug-resistant Mycobacterium tuberculosis strains and to shorten the current 6-12-month treatment regimen. In this work, we have continued the efforts to develop chalcone-based anti-TB compounds by using an in silico design and QSAR-driven approach. Initially, we developed SAR rules and binary QSAR models using literature data for targeted design of new heteroaryl chalcone compounds with anti-TB activity. Using these models, we prioritized 33 compounds for synthesis and biological evaluation. As a result, 10 heteroaryl chalcone compounds (4, 8, 9, 11, 13, 17-20, and 23) were found to exhibit nanomolar activity against replicating mycobacteria, low micromolar activity against nonreplicating bacteria, and nanomolar and micromolar against rifampin (RMP) and isoniazid (INH) monoresistant strains (rRMP and rINH) (<1 µM and <10 µM, respectively). The series also show low activity against commensal bacteria and generally show good selectivity toward M. tuberculosis, with very low cytotoxicity against Vero cells (SI = 11-545). Our results suggest that our designed heteroaryl chalcone compounds, due to their high potency and selectivity, are promising anti-TB agents.


Subject(s)
Antitubercular Agents/pharmacology , Chalcone/pharmacology , Drug Discovery , Mycobacterium tuberculosis/drug effects , Quantitative Structure-Activity Relationship , Tuberculosis, Multidrug-Resistant/drug therapy , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Chalcone/chemical synthesis , Chalcone/chemistry , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Design , Microbial Sensitivity Tests , Molecular Structure , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL