Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Struct Funct ; 224(4): 1659-1676, 2019 May.
Article in English | MEDLINE | ID: mdl-30927056

ABSTRACT

The ventral midline thalamus contributes to hippocampo-cortical interactions supporting systems-level consolidation of memories. Recent hippocampus-dependent memories rely on hippocampal connectivity remodeling. Remote memories are underpinned by neocortical connectivity remodeling. After a ventral midline thalamus lesion, recent spatial memories are formed normally but do not last. Why these memories do not endure after the lesion is unknown. We hypothesized that a lesion could interfere with hippocampal and/or neocortical connectivity remodeling. To test this hypothesis, in a first experiment male rats were subjected to lesion of the reuniens and rhomboid (ReRh) nuclei, trained in a water maze, and tested in a probe trial 5 or 25 days post-acquisition. Dendritic spines were counted in the dorsal hippocampus and medial prefrontal cortex. Spatial learning resulted in a significant increase of mushroom spines in region CA1. This modification persisted between 5 and 25 days post-acquisition in Sham rats, not in rats with ReRh lesion. Furthermore, 25 days after acquisition, the number of mushroom spines in the anterior cingulate cortex (ACC) had undergone a dramatic increase in Sham rats; ReRh lesion prevented this gain. In a second experiment, the increase of c-Fos expression in CA1 accompanying memory retrieval was not affected by the lesion, be it for recent or remote memory. However, in the ACC, the lesion had reduced the retrieval-triggered c-Fos expression observed 25 days post-acquisition. These observations suggest that a ReRh lesion might disrupt spatial remote memory formation by preventing persistence of early remodeled hippocampal connectivity, and spinogenesis in the ACC.


Subject(s)
CA1 Region, Hippocampal/physiology , Dendritic Spines/physiology , Midline Thalamic Nuclei/physiology , Neuronal Plasticity , Prefrontal Cortex/physiology , Spatial Memory/physiology , Animals , Gyrus Cinguli/physiology , Male , Maze Learning/physiology , Memory, Long-Term/physiology , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...