Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34770492

ABSTRACT

Pulsed thermography is a commonly used non-destructive testing method and is increasingly studied for the assessment of advanced materials such as carbon fibre-reinforced polymer (CFRP). Different processing approaches are proposed to detect and characterize anomalies that may be generated in structures during the manufacturing cycle or service period. In this study, matrix decomposition using Robust PCA via Inexact-ALM is investigated as a pre- and post-processing approach in combination with state-of-the-art approaches (i.e., PCT, PPT and PLST) on pulsed thermography thermal data. An academic sample with several artificial defects of different types, i.e., flat-bottom-holes (FBH), pull-outs (PO) and Teflon inserts (TEF), was employed to assess and compare defect detection and segmentation capabilities of different processing approaches. For this purpose, the contrast-to-noise ratio (CNR) and similarity coefficient were used as quantitative metrics. The results show a clear improvement in CNR when Robust PCA is applied as a pre-processing technique, CNR values for FBH, PO and TEF improve up to 164%, 237% and 80%, respectively, when compared to principal component thermography (PCT), whilst the CNR improvement with respect to pulsed phase thermography (PPT) was 77%, 101% and 289%, respectively. In the case of partial least squares thermography, Robust PCA results improved not only only when used as a pre-processing technique but also when used as a post-processing technique; however, this improvement is higher for FBHs and POs after pre-processing. Pre-processing increases CNR scores for FBHs and POs with a ratio from 0.43% to 115.88% and from 13.48% to 216.63%, respectively. Similarly, post-processing enhances the FBHs and POs results with a ratio between 9.62% and 296.9% and 16.98% to 92.6%, respectively. A low-rank matrix computed from Robust PCA as a pre-processing technique on raw data before using PCT and PPT can enhance the results of 67% of the defects. Using low-rank matrix decomposition from Robust PCA as a pre- and post-processing technique outperforms PLST results of 69% and 67% of the defects. These results clearly indicate that pre-processing pulsed thermography data by Robust PCA can elevate the defect detectability of advanced processing techniques, such as PCT, PPT and PLST, while post-processing using the same methods, in some cases, can deteriorate the results.

2.
Sensors (Basel) ; 21(8)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920261

ABSTRACT

Pulsed Thermography (PT) data are usually affected by noise and as such most of the research effort in the last few years has been directed towards the development of advanced signal processing methods to improve defect detection. Among the numerous techniques that have been proposed, principal component thermography (PCT)-based on principal component analysis (PCA)-is one of the most effective in terms of defect contrast enhancement and data compression. However, it is well-known that PCA can be significantly affected in the presence of corrupted data (e.g., noise and outliers). Robust PCA (RPCA) has been recently proposed as an alternative statistical method that handles noisy data more properly by decomposing the input data into a low-rank matrix and a sparse matrix. We propose to process PT data by RPCA instead of PCA in order to improve defect detectability. The performance of the resulting approach, Robust Principal Component Thermography (RPCT)-based on RPCA, was evaluated with respect to PCT-based on PCA, using a CFRP sample containing artificially produced defects. We compared results quantitatively based on two metrics, Contrast-to-Noise Ratio (CNR), for defect detection capabilities, and the Jaccard similarity coefficient, for defect segmentation potential. CNR results were on average 40% higher for RPCT than for PCT, and the Jaccard index was slightly higher for RPCT (0.7395) than for PCT (0.7010). In terms of computational time, however, PCT was 11.5 times faster than RPCT. Further investigations are needed to assess RPCT performance on a wider range of materials and to optimize computational time.

3.
Sensors (Basel) ; 17(11)2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29156650

ABSTRACT

Bicycle frames made of carbon fibre are extremely popular for high-performance cycling due to the stiffness-to-weight ratio, which enables greater power transfer. However, products manufactured using carbon fibre are sensitive to impact damage. Therefore, intelligent nondestructive evaluation is a required step to prevent failures and ensure a secure usage of the bicycle. This work proposes an inspection method based on active thermography, a proven technique successfully applied to other materials. Different configurations for the inspection are tested, including power and heating time. Moreover, experiments are applied to a real bicycle frame with generated impact damage of different energies. Tests show excellent results, detecting the generated damage during the inspection. When the results are combined with advanced image post-processing methods, the SNR is greatly increased, and the size and localization of the defects are clearly visible in the images.

4.
Appl Opt ; 55(34): D162-D172, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27958451

ABSTRACT

The presented approach addresses a review of the overheating that occurs during radiological examinations, such as magnetic resonance imaging, and a series of thermal experiments to determine a thermally suitable fabric material that should be used for radiological gowns. Moreover, an automatic system for detecting and tracking of the thermal fluctuation is presented. It applies hue-saturated-value-based kernelled k-means clustering, which initializes and controls the points that lie on the region-of-interest (ROI) boundary. Afterward, a particle filter tracks the targeted ROI during the video sequence independently of previous locations of overheating spots. The proposed approach was tested during experiments and under conditions very similar to those used during real radiology exams. Six subjects have voluntarily participated in these experiments. To simulate the hot spots occurring during radiology, a controllable heat source was utilized near the subject's body. The results indicate promising accuracy for the proposed approach to track hot spots. Some approximations were used regarding the transmittance of the atmosphere, and emissivity of the fabric could be neglected because of the independence of the proposed approach for these parameters. The approach can track the heating spots continuously and correctly, even for moving subjects, and provides considerable robustness against motion artifact, which occurs during most medical radiology procedures.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Temperature , Human Body , Humans , Motion
SELECTION OF CITATIONS
SEARCH DETAIL
...