Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Opt Mater ; 11(2)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36846517

ABSTRACT

We demonstrate three general effective strategies to mitigate non-radiative losses in the superradiant emission from supramolecular assemblies. We focus on J-aggregates of 5,5',6,6'-tetrachloro-1,1'-diethyl-3,3'-di(4-sulfobutyl)-benzimidazolocarbocyanine (TDBC) and elucidate the nature of their nonradiative processes. We show that self-annealing at room temperature, photo-brightening, and the purification of the dye monomers all lead to substantial increases in emission quantum yields (QYs) and a concomitant lengthening of the emission lifetime, with purification of the monomers having the largest effect. We use structural and optical measurements to support a microscopic model that emphasizes the deleterious effects of a small number of impurity and defect sites that serve as non-radiative recombination centers. This understanding has yielded a room temperature molecular fluorophore in solution with an unprecedented combination of fast emissive lifetime and high QY. We obtain superradiant emission from J-aggregates of TDBC in solution at room temperature with a QY of 82% coupled with an emissive lifetime of 174 ps. This combination of high QY and fast lifetime at room temperature makes supramolecular assemblies of purified TDBC a model system for the study of fundamental superradiance phenomena. High QY J-aggregates are uniquely suited for the development of applications that require high speed and high brightness fluorophores such as devices for high speed optical communication.

2.
Nano Lett ; 21(18): 7457-7464, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34516138

ABSTRACT

As luminescence applications of colloidal semiconductor nanocrystals push toward higher excitation flux conditions, there is an increased need to both understand and potentially control emission from multiexciton states. We develop a spectrally resolved correlation method to study the triply excited state that enables direct measurements of the recombination pathway for the triexciton, rather than relying on indirect extraction of rates. We demonstrate that, for core-shell CdSe-CdS nanocrystals, triexciton emission arises exclusively from the band-edge S-like state. Time-dependent density functional theory and extended particle-in-a-sphere calculations demonstrate that reduced carrier overlap induced by the core-shell heterostructure can account for the lack of emission observed from the P-like state. These results provide a potential avenue for the control of nanocrystal luminescence, where core-shell heterostructures can be leveraged to control carrier separation and therefore maintain emission color purity over a broader range of excitation fluxes.

3.
ACS Nano ; 15(7): 10743-10747, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34228432

ABSTRACT

In 2020, many in-person scientific events were canceled due to the COVID-19 pandemic, creating a vacuum in networking and knowledge exchange between scientists. To fill this void in scientific communication, a group of early career nanocrystal enthusiasts launched the virtual seminar series, News in Nanocrystals, in the summer of 2020. By the end of the year, the series had attracted over 850 participants from 46 countries. In this Nano Focus, we describe the process of organizing the News in Nanocrystals seminar series; discuss its growth, emphasizing what the organizers have learned in terms of diversity and accessibility; and provide an outlook for the next steps and future opportunities. This summary and analysis of experiences and learned lessons are intended to inform the broader scientific community, especially those who are looking for avenues to continue fostering discussion and scientific engagement virtually, both during the pandemic and after.


Subject(s)
COVID-19 , Nanoparticles , Humans , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL
...