Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
CRISPR J ; 6(6): 543-556, 2023 12.
Article in English | MEDLINE | ID: mdl-38108518

ABSTRACT

Escalating vector disease burdens pose significant global health risks, as such innovative tools for targeting mosquitoes are critical. CRISPR-Cas technologies have played a crucial role in developing powerful tools for genome manipulation in various eukaryotic organisms. Although considerable efforts have focused on utilizing class II type II CRISPR-Cas9 systems for DNA targeting, these modalities are unable to target RNA molecules, limiting their utility against RNA viruses. Recently, the Cas13 family has emerged as an efficient tool for RNA targeting; however, the application of this technique in mosquitoes, particularly Aedes aegypti, has yet to be fully realized. In this study, we engineered an antiviral strategy termed REAPER (vRNA Expression Activates Poisonous Effector Ribonuclease) that leverages the programmable RNA-targeting capabilities of CRISPR-Cas13 and its potent collateral activity. REAPER remains concealed within the mosquito until an infectious blood meal is uptaken. Upon target viral RNA infection, REAPER activates, triggering programmed destruction of its target arbovirus such as chikungunya. Consequently, Cas13-mediated RNA targeting significantly reduces viral replication and viral prevalence of infection, and its promiscuous collateral activity can even kill infected mosquitoes within a few days. This innovative REAPER technology adds to an arsenal of effective molecular genetic tools to combat mosquito virus transmission.


Subject(s)
Culicidae , Animals , CRISPR-Cas Systems/genetics , Gene Editing , Mosquito Vectors/genetics , RNA, Viral/genetics , Antiviral Agents/pharmacology
2.
bioRxiv ; 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36747634

ABSTRACT

Escalating vector disease burdens pose significant global health risks, so innovative tools for targeting mosquitoes are critical. We engineered an antiviral strategy termed REAPER (vRNA Expression Activates Poisonous Effector Ribonuclease) that leverages the programmable RNA-targeting capabilities of CRISPR Cas13 and its potent collateral activity. Akin to a stealthy Trojan Horse hiding in stealth awaiting the presence of its enemy, REAPER remains concealed within the mosquito until an infectious blood meal is up taken. Upon target viral RNA infection, REAPER activates, triggering programmed destruction of its target arbovirus such as chikungunya. Consequently, Cas13 mediated RNA targeting significantly reduces viral replication and its promiscuous collateral activity can even kill infected mosquitoes. This innovative REAPER technology adds to an arsenal of effective molecular genetic tools to combat mosquito virus transmission.

3.
PLoS Pathog ; 19(1): e1011117, 2023 01.
Article in English | MEDLINE | ID: mdl-36719928

ABSTRACT

Aedes aegypti mosquitoes carrying self-spreading, virus-blocking Wolbachia bacteria are being deployed to suppress dengue transmission. However, there are challenges in applying this technology in extreme environments. We introduced two Wolbachia strains into Ae. aegypti from Saudi Arabia for a release program in the hot coastal city of Jeddah. Wolbachia reduced infection and dissemination of dengue virus (DENV2) in Saudi Arabian mosquitoes and showed complete maternal transmission and cytoplasmic incompatibility. Wolbachia reduced egg hatch under a range of environmental conditions, with the Wolbachia strains showing differential thermal stability. Wolbachia effects were similar across mosquito genetic backgrounds but we found evidence of local adaptation, with Saudi Arabian mosquitoes having lower egg viability but higher adult desiccation tolerance than Australian mosquitoes. Genetic background effects will influence Wolbachia invasion dynamics, reinforcing the need to use local genotypes for mosquito release programs, particularly in extreme environments like Jeddah. Our comprehensive characterization of Wolbachia strains provides a foundation for Wolbachia-based disease interventions in harsh climates.


Subject(s)
Aedes , Dengue , Wolbachia , Animals , Saudi Arabia , Australia , Extreme Environments
5.
PLoS Pathog ; 16(1): e1008103, 2020 01.
Article in English | MEDLINE | ID: mdl-31945137

ABSTRACT

With dengue virus (DENV) becoming endemic in tropical and subtropical regions worldwide, there is a pressing global demand for effective strategies to control the mosquitoes that spread this disease. Recent advances in genetic engineering technologies have made it possible to create mosquitoes with reduced vector competence, limiting their ability to acquire and transmit pathogens. Here we describe the development of Aedes aegypti mosquitoes synthetically engineered to impede vector competence to DENV. These mosquitoes express a gene encoding an engineered single-chain variable fragment derived from a broadly neutralizing DENV human monoclonal antibody and have significantly reduced viral infection, dissemination, and transmission rates for all four major antigenically distinct DENV serotypes. Importantly, this is the first engineered approach that targets all DENV serotypes, which is crucial for effective disease suppression. These results provide a compelling route for developing effective genetic-based DENV control strategies, which could be extended to curtail other arboviruses.


Subject(s)
Aedes/genetics , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , Dengue Virus/immunology , Aedes/virology , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/genetics , Broadly Neutralizing Antibodies/biosynthesis , Broadly Neutralizing Antibodies/genetics , Female , Humans , Male , Protein Engineering , Single-Chain Antibodies/genetics
6.
Viruses ; 11(6)2019 06 04.
Article in English | MEDLINE | ID: mdl-31167461

ABSTRACT

Chikungunya virus (CHIKV) is an emerging pathogen around the world and causes significant morbidity in patients. A single amino acid mutation in the envelope protein of CHIKV has led to a shift in vector preference towards Aedesalbopictus. While mosquitoes are known to mount an antiviral immune response post-infection, molecular interactions during the course of infection at the tissue level remain largely uncharacterised. We performed whole transcriptome analysis on dissected midguts of Aedes albopictus infected with CHIKV to identify differentially expressed genes. For this, RNA was extracted at two days post-infection (2-dpi) from pooled midguts. We initially identified 25 differentially expressed genes (p-value < 0.05) when mapped to a reference transcriptome. Further, multiple differentially expressed genes were identified from a custom de novo transcriptome, which was assembled using the reads that did not align with the reference genome. Thirteen of the identified transcripts, possibly involved in immunity, were validated by qRT-PCR. Homologues of seven of these genes were also found to be significantly upregulated in Aedes aegypti midguts 2 dpi, indicating a conserved mechanism at play. These results will help us to characterise the molecular interaction between Aedes albopictus and CHIKV and can be utilised to reduce the impact of this viral infection.


Subject(s)
Aedes/virology , Chikungunya virus , Intestines/virology , Mosquito Vectors/virology , Animals , Chikungunya Fever/transmission , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Chikungunya virus/metabolism , Gene Expression Profiling , Host-Pathogen Interactions , Humans , Immunity/genetics , Exome Sequencing
7.
Proc Natl Acad Sci U S A ; 116(9): 3656-3661, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30723148

ABSTRACT

Recent Zika virus (ZIKV) outbreaks have highlighted the necessity for development of novel vector control strategies to combat arboviral transmission, including genetic versions of the sterile insect technique, artificial infection with Wolbachia to reduce population size and/or vectoring competency, and gene drive-based methods. Here, we describe the development of mosquitoes synthetically engineered to impede vector competence to ZIKV. We demonstrate that a polycistronic cluster of engineered synthetic small RNAs targeting ZIKV is expressed and fully processed in Aedes aegypti, ensuring the formation of mature synthetic small RNAs in the midgut where ZIKV resides in the early stages of infection. Critically, we demonstrate that engineered Ae. aegypti mosquitoes harboring the anti-ZIKV transgene have significantly reduced viral infection, dissemination, and transmission rates of ZIKV. Taken together, these compelling results provide a promising path forward for development of effective genetic-based ZIKV control strategies, which could potentially be extended to curtail other arboviruses.


Subject(s)
Mosquito Vectors/genetics , Zika Virus Infection/genetics , Zika Virus/genetics , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/virology , Disease Outbreaks , Humans , Mosquito Vectors/virology , Saliva/virology , Viral Load/genetics , Wolbachia/pathogenicity , Wolbachia/virology , Zika Virus/pathogenicity , Zika Virus Infection/transmission , Zika Virus Infection/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...