Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Front Immunol ; 14: 1248867, 2023.
Article in English | MEDLINE | ID: mdl-37736099

ABSTRACT

The treatment of cancer was revolutionized within the last two decades by utilizing the mechanism of the immune system against malignant tissue in so-called cancer immunotherapy. Two main developments boosted cancer immunotherapy: 1) the use of checkpoint inhibitors, which are characterized by a relatively high response rate mainly in solid tumors; however, at the cost of serious side effects, and 2) the use of chimeric antigen receptor (CAR)-T cells, which were shown to be very efficient in the treatment of hematologic malignancies, but failed to show high clinical effectiveness in solid tumors until now. In addition, active immunization against individual tumors is emerging, and the first products have reached clinical approval. These new treatment options are very cost-intensive and are not financially compensated by health insurance in many countries. Hence, strategies must be developed to make cancer immunotherapy affordable and to improve the cost-benefit ratio. In this review, we discuss the following strategies: 1) to leverage the antigenicity of "cold tumors" with affordable reagents, 2) to use microbiome-based products as markers or therapeutics, 3) to apply measures that make adoptive cell therapy (ACT) cheaper, e.g., the use of off-the-shelf products, 4) to use immunotherapies that offer cheaper platforms, such as RNA- or peptide-based vaccines and vaccines that use shared or common antigens instead of highly personal antigens, 5) to use a small set of predictive biomarkers instead of the "sequence everything" approach, and 6) to explore affordable immunohistochemistry markers that may direct individual therapies.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Hematologic Neoplasms , Humans , Immunotherapy , Cell- and Tissue-Based Therapy , Insurance, Health
2.
EMBO Mol Med ; 14(8): e15653, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35785521

ABSTRACT

Irradiation-induced alopecia and dermatitis (IRIAD) are two of the most visually recognized complications of radiotherapy, of which the molecular and cellular basis remains largely unclear. By combining scRNA-seq analysis of whole skin-derived irradiated cells with genetic ablation and molecular inhibition studies, we show that senescence-associated IL-6 and IL-1 signaling, together with IL-17 upregulation and CCR6+ -mediated immune cell migration, are crucial drivers of IRIAD. Bioinformatics analysis colocalized irradiation-induced IL-6 signaling with senescence pathway upregulation largely within epidermal hair follicles, basal keratinocytes, and dermal fibroblasts. Loss of cytokine signaling by genetic ablation in IL-6-/- or IL-1R-/- mice, or by molecular blockade, strongly ameliorated IRIAD, as did deficiency of CCL20/CCR6-mediated immune cell migration in CCR6-/- mice. Moreover, IL-6 deficiency strongly reduced IL-17, IL-22, CCL20, and CCR6 upregulation, whereas CCR6 deficiency reciprocally diminished IL-6, IL-17, CCL3, and MHC upregulation, suggesting that proximity-dependent cellular cross talk promotes IRIAD. Therapeutically, topical application of Janus kinase blockers or inhibition of T-cell activation by cyclosporine effectively reduced IRIAD, suggesting the potential of targeted approaches for the treatment of dermal side effects in radiotherapy patients.


Subject(s)
Radiodermatitis , Receptors, CCR6 , Animals , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-6/genetics , Mice , Receptors, CCR6/genetics , Receptors, CCR6/metabolism , Transcriptome
3.
Immunol Res ; 70(6): 793-799, 2022 12.
Article in English | MEDLINE | ID: mdl-35867216

ABSTRACT

Immune checkpoint receptors (ICR) modulate the immune response and are critical hubs for immunotherapy. However, data on their role in T lymphoid malignancies, such as cutaneous T cell lymphoma (CTCL), is sparse. We aimed to explore the role of ICR in the malignant features of transformed T lymphocytes and evaluate the effect of ICR-targeting monoclonal antibodies, often used as immunotherapy for solid tumors. We used the CTCL cell line HH and the Sézary cell line Hut78 to examine ICR expression and the effects of ICR inhibition on cell viability and proliferation. Despite their shared T cell progeny, the different CTCL cell lines exhibit markedly different ICR expression profiles. Programmed cell death-ligand 1 (PD-L1) was expressed by both cell lines, while programmed death-1 (PD-1) was expressed only by the HH cell line. Common to all malignant T cells was an autonomous hyper-proliferative state that did not require T cell receptor stimulation. A monoclonal antibody blocking PD-1 had a small but statistically significant augmenting effect on T cell proliferation. Of note, when the cells were exposed to ionizing radiation, healthy lymphocytes and those derived from the HH cell line were salvaged by anti-PD-L1. We show a regulatory role of ICR, mainly PD-1 and its ligand PD-L1, on cutaneous T cell malignancy.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Programmed Cell Death 1 Receptor , Humans , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/metabolism , Ligands , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Immunotherapy , Phenotype
4.
Cancer Immunol Res ; 9(6): 637-650, 2021 06.
Article in English | MEDLINE | ID: mdl-33762352

ABSTRACT

SLAMF6 is a homotypic receptor of the Ig-superfamily associated with progenitor-exhausted T cells. Here we show that in humans, SLAMF6 has three splice isoforms involving its V-domain. Although the canonical receptor inhibited T-cell activation through SAP recruitment, the short isoform SLAMF6Δ17-65 had a strong agonistic effect. The costimulatory action depended on protein phosphatase SHP1 and led to a cytotoxic molecular profile mediated by the expression of TBX21 and RUNX3. Patients treated with immune checkpoint blockade showed a shift toward SLAMF6Δ17-65 in peripheral blood T cells. We developed splice-switching antisense oligonucleotides (ASO) designed to target the relevant SLAMF6 splice junction. Our ASOs enhanced SLAMF6Δ17-65 expression in human tumor-infiltrating lymphocytes and improved their capacity to inhibit human melanoma in mice. The yin-yang relationship of SLAMF6 splice isoforms may represent a balancing mechanism that could be exploited to improve cancer immunotherapy.


Subject(s)
Alternative Splicing/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma, Experimental/genetics , Melanoma/immunology , Signaling Lymphocytic Activation Molecule Family/genetics , Animals , Female , HEK293 Cells , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Jurkat Cells , Lymphocyte Activation/immunology , Melanoma/drug therapy , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Nude
5.
Front Oncol ; 10: 70, 2020.
Article in English | MEDLINE | ID: mdl-32117727

ABSTRACT

Melanoma survival increased with targeted- and immunotherapy agents, yet most patients ultimately progress and require salvage therapy. In our experience, some progressive disease patients on immune-checkpoint inhibitors (ICIs) demonstrate deep and sustained responses to chemotherapy. We hypothesized that ICIs improve the response to subsequent chemotherapy in metastatic melanoma. We conducted a retrospective study to compare the efficacy of chemotherapy given with prior immunotherapy, to its efficacy given without it. We measured progression free survival (PFS), overall survival, and response rate. Immune-monitoring was performed on sequential peripheral blood mononuclear cell samples taken from a chemotherapy-responsive patient. The chemotherapy post-immunotherapy group (CpI) included 11 patients, the chemotherapy without prior immunotherapy (CNPI) group included 24 patients. Median PFS was 5.2 months in the CpI vs. 2.5 months in the CNPI groups; HR 0.37 [95% Confidence interval (CI) 0.144-0.983], P = 0.046. Immune-monitoring showed an increased proportion of CD8+ cells, with elevated PD-1 and CD69 expression, while on chemotherapy, as compared with all-time points on ICIs, suggesting immune-activation. Immunotherapy potentiates the effect of chemotherapy in metastatic melanoma possibly through activation of CD8+ T cells.

6.
Elife ; 92020 03 03.
Article in English | MEDLINE | ID: mdl-32122464

ABSTRACT

SLAMF6 is a homotypic receptor of the Ig-superfamily whose exact role in immune modulation has remained elusive. Its constitutive expression on resting and activated T cells precludes it from being a bona fide exhaustion marker. By breeding Pmel-1 mice with SLAMF6 -/- mice, we generated donors for T cells lacking SLAMF6 and expressing a transgenic TCR for gp100-melanoma antigen. Activated Pmel-1xSLAMF6 -/- CD8+ T cells displayed improved polyfunctionality and strong tumor cytolysis. T-bet was the dominant transcription factor in Pmel-1 x SLAMF6 -/- cells, and upon activation, they acquired an effector-memory phenotype. Adoptive transfer of Pmel-1 x SLAMF6 -/- T cells to melanoma-bearing mice resulted in lasting tumor regression in contrast to temporary responses achieved with Pmel-1 T cells. LAG-3 expression was elevated in the SLAMF6 -/- cells, and the addition of the LAG-3-blocking antibody to the adoptive transfer protocol improved the SLAMF6 -/- T cells and expedited the antitumor response even further. The results from this study support the notion that SLAMF6 is an inhibitory immune receptor whose absence enables powerful CD8+ T cells to eradicate tumors.


The immune system helps to protect our bodies from illnesses and infections. Immunotherapies are medicines designed to treat diseases, such as cancer, by boosting the immune system against the condition. This is a powerful approach but so far immunotherapies have only had partial success and there is a need for further improvements. One protein called SLAMF6 is found on cells from the immune system that attack and kill cancer cells. Immunotherapies that suppress SLAMF6 on immune cells called killer T cells could increase immune system activity helping to treat cancers, particularly melanoma skin cancers. So far the potential for SLAMF6 as a target for immunotherapy has not been fully explored. Hajaj et al. created mice with killer T cells that recognized skin cancer cells and lacked SLAMF6. These modified cells were better at fighting cancer, producing more anti-cancer chemicals called cytokines and killing more cancer cells. The modified cells had a lasting effect on tumors and helped the mice to live longer. The effects could be further boosted by treating the mice in combination with other immunotherapies. SLAMF6 is a possible new target for skin cancer immunotherapy that could help more people to live longer following cancer diagnosis. The next step is to create a drug to target SLAMF6 in humans and to test it in clinical trials.


Subject(s)
Apoptosis/genetics , CD8-Positive T-Lymphocytes/immunology , Melanoma, Experimental/pathology , Signaling Lymphocytic Activation Molecule Family/genetics , Animals , Humans , Lymphocyte Activation/immunology , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic
7.
Cytokine ; 109: 11-16, 2018 09.
Article in English | MEDLINE | ID: mdl-29903571

ABSTRACT

The chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1/CXCL12) are important players in the cross-talk among lymphoma, myeloma and leukemia cells and their microenvironments. In hematological malignancies and solid tumors, the overexpression of CXCR4 on the cell surface has been shown to be responsible for disease progression, increasing tumor cell survival and chemoresistance and metastasis to organs with high CXCL12 levels (e.g., lymph nodes and bone marrow (BM)). Furthermore, the overexpression of CXCR4 has been found to have prognostic significance for disease progression in many type of tumors including lymphoma, leukemia, glioma, and prostate, breast, colorectal, renal, and hepatocellular carcinomas. In leukemia, CXCR4 expression granted leukemic blasts a higher capacity to seed into BM niches, thereby protecting leukemic cells from chemotherapy-induced apoptosis, and was correlated with shorter disease-free survival. In contrast, neutralizing the interaction of CXCL12/CXCR4 with a variety of antagonists induced apoptosis and differentiation and increased the chemosensitivity of lymphoma, myeloma, and leukemia cells. The role of CXCL12 and CXCR4 in the pathogenesis of hematological malignancies and the clinical therapeutic potential of CXCR4 antagonists in these diseases is discussed.


Subject(s)
Chemokine CXCL12/metabolism , Hematologic Neoplasms/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Myeloid, Acute/pathology , Multiple Myeloma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptors, CXCR4/metabolism , Apoptosis/immunology , Cell Survival/physiology , Disease Progression , Hematologic Neoplasms/drug therapy , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Prognosis , Tumor Microenvironment/physiology
8.
Cancer Res ; 78(6): 1471-1483, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29259008

ABSTRACT

CXCR4 expression in neuroblastoma tumors correlates with disease severity. In this study, we describe mechanisms by which CXCR4 signaling controls neuroblastoma tumor growth and response to therapy. We found that overexpression of CXCR4 or stimulation with CXCL12 supports neuroblastoma tumorigenesis. Moreover, CXCR4 inhibition with the high-affinity CXCR4 antagonist BL-8040 prevented tumor growth and reduced survival of tumor cells. These effects were mediated by the upregulation of miR-15a/16-1, which resulted in downregulation of their target genes BCL-2 and cyclin D1, as well as inhibition of ERK. Overexpression of miR-15a/16-1 in cells increased cell death, whereas antagomirs to miR-15a/16-1 abolished the proapoptotic effects of BL-8040. CXCR4 overexpression also increased miR-15a/16-1, shifting their oncogenic dependency from the BCL-2 to the ERK signaling pathway. Overall, our results demonstrate the therapeutic potential of CXCR4 inhibition in neuroblastoma treatment and provide a rationale to test combination therapies employing CXCR4 and BCL-2 inhibitors to increase the efficacy of these agents.Significance: These results provide a mechanistic rationale for combination therapy of CXCR4 and BCL-2 inhibitors to treat a common and commonly aggressive pediatric cancer.Cancer Res; 78(6); 1471-83. ©2017 AACR.


Subject(s)
Brain Neoplasms/pathology , MicroRNAs/metabolism , Neuroblastoma/pathology , Receptors, CXCR4/metabolism , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Cyclin D1/genetics , Cyclin D1/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Mice , MicroRNAs/genetics , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Peptides/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/genetics , Xenograft Model Antitumor Assays
9.
Clin Cancer Res ; 23(22): 6790-6801, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28835380

ABSTRACT

Purpose: The potential of the high-affinity CXCR4 antagonist BL-8040 as a monotherapy-mobilizing agent and its derived graft composition and quality were evaluated in a phase I clinical study in healthy volunteers (NCT02073019).Experimental Design: The first part of the study was a randomized, double-blind, placebo-controlled dose escalation phase. The second part of the study was an open-label phase, in which 8 subjects received a single injection of BL-8040 (1 mg/kg) and approximately 4 hours later underwent a standard leukapheresis procedure. The engraftment potential of the purified mobilized CD34+ cells was further evaluated by transplanting the cells into NSG immunodeficient mice.Results: BL-8040 was found safe and well tolerated at all doses tested (0.5-1 mg/kg). The main treatment-related adverse events were mild to moderate. Transient injection site and systemic reactions were mitigated by methylprednisolone, paracetamol, and promethazine pretreatment. In the first part of the study, BL-8040 triggered rapid and substantial mobilization of WBCs and CD34+ cells in all tested doses. Four hours postdose, the count rose to a mean of 8, 37, 31, and 35 cells/µL (placebo, 0.5, 0.75, and 1 mg/kg, respectively). FACS analysis revealed substantial mobilization of immature dendritic, T, B, and NK cells. In the second part, the mean CD34+ cells/kg collected were 11.6 × 106 cells/kg. The graft composition was rich in immune cells.Conclusions: The current data demonstrate that BL-8040 is a safe and effective monotherapy strategy for the collection of large amounts of CD34+ cells and immune cells in a one-day procedure for allogeneic HSPC transplantation. Clin Cancer Res; 23(22); 6790-801. ©2017 AACR.


Subject(s)
Antigens, CD34/metabolism , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Peptides/administration & dosage , Receptors, CXCR4/antagonists & inhibitors , Animals , Biomarkers , Female , Granulocyte Colony-Stimulating Factor/administration & dosage , Healthy Volunteers , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Humans , Immunophenotyping , Leukapheresis , Male , Mice , Mice, Inbred NOD , Mice, SCID , Models, Animal , Transplantation, Homologous
10.
Gastroenterology ; 153(5): 1404-1415, 2017 11.
Article in English | MEDLINE | ID: mdl-28802563

ABSTRACT

BACKGROUND & AIMS: Effective treatments are needed for hepatic steatosis characterized by accumulation of triglycerides in hepatocytes, which leads to hepatocellular carcinoma. MicroRNA 122 (MIR122) is expressed only in the liver, where it regulates lipid metabolism. We investigated the mechanism by which free fatty acids (FFAs) regulate MIR122 expression and the effect of MIR122 on triglyceride synthesis. METHODS: We analyzed MIR122 promoter activity and validated its target mRNAs by transfection of Luciferase reporter plasmids into Huh7, BNL-1ME, and HEK293 cultured cell lines. We measured levels of microRNAs and mRNAs by quantitative real-time PCR analysis of RNA extracted from plasma, liver, muscle, and adipose tissues of C57BL/6 mice given the FFA-inducer CL316243. MIR122 was inhibited using an inhibitor of MIR122. Metabolic profiles of mice were determined using metabolic chambers and by histologic analyses of liver tissues. We performed RNA sequence analyses to identify metabolic pathways involving MIR122. RESULTS: We validated human Agpat1 and Dgat1 mRNAs, involved in triglyceride synthesis, as targets of MIR122. FFAs increased MIR122 expression in livers of mice by activating the retinoic acid-related orphan receptor alpha, and induced secretion of MIR122 from liver to blood. Circulating MIR122 entered muscle and adipose tissues of mice, reducing mRNA levels of genes involved in triglyceride synthesis. Mice injected with an inhibitor of MIR122 and then given CL316243, accumulated triglycerides in liver and muscle tissues, and had reduced rates of ß-oxidation. There was a positive correlation between level of FFAs and level of MIR122 in plasma samples from 6 healthy individuals, collected before and during fasting. CONCLUSIONS: In biochemical and histologic studies of plasma, liver, muscle, and adipose tissues from mice, we found that FFAs increase hepatic expression and secretion of MIR122, which regulates energy storage vs expenditure in liver and peripheral tissues. Strategies to reduce triglyceride levels, by increasing MIR122, might be developed for treatment of metabolic syndrome.


Subject(s)
Energy Metabolism , Fatty Acids, Nonesterified/metabolism , Liver/metabolism , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Triglycerides/biosynthesis , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Adipose Tissue/metabolism , Animals , Antagomirs/genetics , Antagomirs/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Dioxoles/pharmacology , Energy Metabolism/drug effects , HEK293 Cells , Humans , Liver/drug effects , Male , Metabolomics/methods , Mice, Inbred C57BL , MicroRNAs/genetics , Muscle, Skeletal/drug effects , Oxidation-Reduction , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors , Transfection
11.
Clin Cancer Res ; 23(7): 1733-1747, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-27697999

ABSTRACT

Purpose: To explore the functional consequences of possible cross-talk between the CXCR4/CXCL12 and the sphingosine-1-phosphate (S1P) pathways in multiple myeloma (MM) cells and to evaluate the effect of S1P targeting with the FTY720 modulator as a potential anti-MM therapeutic strategy.Experimental Design and Results: S1P targeting with FTY720 induces MM cell apoptosis. The combination of FTY720 with the SPHK1 inhibitor SKI-II results in synergistic inhibition of MM growth. CXCR4/CXCL12-enhanced expression correlates with reduced MM cell sensitivity to both FTY720 and SKI-II inhibitors, and with SPHK1 coexpression in both cell lines and primary MM bone marrow (BM) samples, suggesting regulative cross-talk between the CXCR4/CXCL12 and SPHK1 pathways in MM cells. FTY720 was found to directly target CXCR4. FTY720 profoundly reduces CXCR4 cell-surface levels and abrogates the CXCR4-mediated functions of migration toward CXCL12 and signaling pathway activation. Moreover, FTY720 cooperates with bortezomib, inducing its cytotoxic activity and abrogating the bortezomib-mediated increase in CXCR4 expression. FTY720 effectively targets bortezomib-resistant cells and increases their sensitivity to bortezomib, promoting DNA damage. Finally, in a recently developed novel xenograft model of CXCR4-dependent systemic MM with BM involvement, FTY720 treatment effectively reduces tumor burden in the BM of MM-bearing mice. FTY720 in combination with bortezomib demonstrates superior tumor growth inhibition and abrogates bortezomib-induced CXCR4 increase on MM cells.Conclusions: Altogether, our work identifies a cross-talk between the S1P and CXCR4 pathways in MM cells and provides a preclinical rationale for the therapeutic application of FTY720 in combination with bortezomib in patients with MM. Clin Cancer Res; 23(7); 1733-47. ©2016 AACR.


Subject(s)
Chemokine CXCL12/genetics , Multiple Myeloma/drug therapy , Phosphotransferases (Alcohol Group Acceptor)/genetics , Receptors, CXCR4/genetics , Animals , Apoptosis/drug effects , Bortezomib/administration & dosage , DNA Damage/drug effects , Drug Synergism , Fingolimod Hydrochloride/administration & dosage , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lysophospholipids/genetics , Lysophospholipids/metabolism , Mice , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Signal Transduction/drug effects , Sphingosine/analogs & derivatives , Sphingosine/genetics , Sphingosine/metabolism , Xenograft Model Antitumor Assays
12.
Hepatology ; 58(3): 1021-30, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23526353

ABSTRACT

UNLABELLED: Human hepatocellular carcinoma (HCC) is an inflammation-induced cancer, which is the third-leading cause of cancer mortality worldwide. We investigated the role of the chemokine receptors, CCR5 and CCR1, in regulating inflammation and tumorigenesis in an inflammation-induced HCC model in mice. Multidrug resistance 2 gene (Mdr2)-knockout (Mdr2-KO) mice spontaneously develop chronic cholestatic hepatitis and fibrosis that is eventually followed by HCC. We generated two new strains from the Mdr2-KO mouse, the Mdr2:CCR5 and the Mdr2:CCR1 double knockouts (DKOs), and set out to compare inflammation and tumorigenesis among these strains. We found that in Mdr2-KO mice lacking the chemokine receptor, CCR5 (Mdr2:CCR5 DKO mice), but not CCR1 (Mdr2:CCR1 DKO), macrophage recruitment and trafficking to the liver was significantly reduced. Furthermore, in the absence of CCR5, reduced inflammation was also associated with reduced periductal accumulation of CD24(+) oval cells and abrogation of fibrosis. DKO mice for Mdr2 and CCR5 exhibited a significant decrease in tumor incidence and size. CONCLUSIONS: Our results indicate that CCR5 has a critical role in both the development and progression of liver cancer. Therefore, we propose that a CCR5 antagonist can serve for HCC cancer prevention and treatment.


Subject(s)
Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/physiopathology , Hepatitis, Chronic/complications , Liver Cirrhosis/complications , Liver Neoplasms/etiology , Liver Neoplasms/physiopathology , Receptors, CCR5/physiology , ATP Binding Cassette Transporter, Subfamily B/deficiency , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/physiology , Animals , Carcinoma, Hepatocellular/epidemiology , Chemokine CCL5/physiology , Disease Models, Animal , Disease Progression , Hepatitis, Chronic/genetics , Incidence , Liver/pathology , Liver/physiopathology , Liver Cirrhosis/genetics , Liver Neoplasms/epidemiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CCR1/deficiency , Receptors, CCR1/genetics , Receptors, CCR1/physiology , Receptors, CCR5/deficiency , Receptors, CCR5/genetics , ATP-Binding Cassette Sub-Family B Member 4
13.
J Ind Microbiol Biotechnol ; 39(11): 1605-13, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22760669

ABSTRACT

Electrospun hollow polymeric microfibers (microtubes) were evaluated as an encapsulation method for the atrazine degrading bacterium Pseudomonas sp. ADP. Pseudomonas sp. ADP cells were successfully incorporated in a formulation containing a core solution of polyethylene oxide dissolved in water and spun with an outer shell solution made of polycaprolactone and polyethylene glycol dissolved in a chloroform and dimethylformamide. The resulting microtubes, collected as mats, were partially collapsed with a ribbon-like structure. Following encapsulation, the atrazine degradation rate was low (0.03 ± 0.01 mg atrazine/h/g fiber) indicating that the electrospinning process negatively affected cell activity. Atrazine degradation was restored to 0.5 ± 0.1 mg atrazine/h/g fiber by subjecting the microtubes to a period of growth. After 3 and 7 days growth periods, encapsulated cells were able to remove 20.6 ± 3 and 47.6 ± 5.9 mg atrazine/g mat, respectively, in successive batches under non-growth conditions (with no additional electron donor) until atrazine was detected in the medium. The loss of atrazine degrading capacity was regained following an additional cell-growth period.


Subject(s)
Atrazine/isolation & purification , Atrazine/metabolism , Pseudomonas/metabolism , Biodegradation, Environmental , Microbial Viability , Pseudomonas/cytology , Pseudomonas/growth & development , Pseudomonas/ultrastructure
14.
Water Res ; 40(14): 2704-12, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16814359

ABSTRACT

A favorable microenvironment for biofilm growth on GAC particles was shown using green fluorescent protein (GFP) as a marker for a phenol degrading bacterium, Pseudomonas putida F1. The dispersion of P. putida F1 in a biofilm covering granulated activated carbon (GAC) particles was monitored and compared to a biofilm on non-activated granular carbon particles. Laser scanning confocal microscopy (LSCM) micrographs of the biofilms taken from two fluidized bed reactors operating under identical conditions, showed higher fluorescent green areas in the GAC biofilm, especially close to the GAC surface. Quantitative analysis of the biofilm by COMSTAT, a three-dimensional biofilm structure analysis program, showed higher biomass concentration and higher viability in the GAC covered biofilm vs. the non-activated carbon biofilm. In addition, better effluent quality was measured for the BGAC reactor, which strongly suggests a significantly larger biofilm surface area available to the substrate, as opposed to that of the non-activated carbon carrier reactor.


Subject(s)
Biomass , Bioreactors/microbiology , Carbon/chemistry , Carbon/metabolism , Green Fluorescent Proteins/metabolism , Pseudomonas putida/metabolism , Waste Disposal, Fluid/methods , Biofilms , Cell Count , Green Fluorescent Proteins/genetics , Microscopy, Confocal , Particle Size , Phenol/metabolism , Pseudomonas putida/cytology , Pseudomonas putida/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...