Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Neurosci Lett ; 818: 137556, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37951300

ABSTRACT

ADHD is a neurocognitive disorder characterized by attention difficulties, hyperactivity, and impulsivity, often persisting into adulthood with substantial personal and societal consequences. Despite the importance of neurophysiological assessment and treatment monitoring tests, their availability outside of research settings remains limited. Cognitive neuroscience investigations have identified distinct components associated with ADHD, including deficits in sustained attention, inefficient enhancement of attended Targets, and altered suppression of ignored Distractors. In this study, we examined pupil activity in control and ADHD subjects during a sustained visual attention task specifically designed to evaluate the mechanisms underlying Target enhancement and Distractor suppression. Our findings revealed some distinguishing factors between the two groups which we discuss in light of their neurobiological implications.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Humans , Attention Deficit Disorder with Hyperactivity/psychology , Dilatation , Impulsive Behavior , Psychomotor Agitation
2.
J Vis ; 14(13): 12, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25398974

ABSTRACT

Perceptual learning, a process in which training improves visual discrimination, is often specific to the trained retinal location, and this location specificity is frequently regarded as an indication of neural plasticity in the retinotopic visual cortex. However, our previous studies have shown that "double training" enables location-specific perceptual learning, such as Vernier learning, to completely transfer to a new location where an irrelevant task is practiced. Here we show that Vernier learning can be actuated by less location-specific orientation or motion-direction learning to transfer to completely untrained retinal locations. This "piggybacking" effect occurs even if both tasks are trained at the same retinal location. However, piggybacking does not occur when the Vernier task is paired with a more location-specific contrast-discrimination task. This previously unknown complexity challenges the current understanding of perceptual learning and its specificity/transfer. Orientation and motion-direction learning, but not contrast and Vernier learning, appears to activate a global process that allows learning transfer to untrained locations. Moreover, when paired with orientation or motion-direction learning, Vernier learning may be "piggybacked" by the activated global process to transfer to other untrained retinal locations. How this task-specific global activation process is achieved is as yet unknown.


Subject(s)
Learning/physiology , Retina/physiology , Transfer, Psychology/physiology , Visual Perception/physiology , Discrimination Learning/physiology , Humans , Orientation/physiology , Visual Cortex/physiology , Young Adult
3.
Vision Res ; 105: 204-12, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25159288

ABSTRACT

Recent research has demonstrated that involuntary attention improves target identification accuracy for letters using non-predictive peripheral cues, helping to resolve some of the controversy over performance enhancement from involuntary attention. While various cueing studies have demonstrated that their reported cueing effects were not due to response bias to the cue, very few investigations have quantified the extent of any response bias or developed methods of removing bias from observed results in a double judgment accuracy task. We have devised a method to quantify and remove response bias to cued locations in a double judgment accuracy cueing task, revealing the true, unbiased performance enhancement from involuntary and voluntary attention. In a 7-alternative forced choice cueing task using backward masked stimuli to temporally constrain stimulus processing, non-predictive cueing increased target detection and discrimination at cued locations relative to uncued locations even after cue location bias had been corrected.


Subject(s)
Attention/physiology , Visual Perception/physiology , Adult , Analysis of Variance , Cues , Discrimination, Psychological , Female , Humans , Judgment , Male , Photic Stimulation/methods , Reaction Time/physiology , Reading , Signal Detection, Psychological/physiology , Space Perception/physiology , Young Adult
4.
Vision Res ; 105: 213-25, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25130410

ABSTRACT

The present experiments indicate that in a 7-AFC double judgment accuracy task with unmasked stimuli, cue location response bias can be quantified and removed, revealing unbiased improvements in response accuracy for valid cues compared to invalid cues. By testing for cueing effects over a range of contrast levels with unmasked stimuli, changes in the psychometric function were examined and provide insight into the mechanisms of involuntary attention which might account for the observed cueing effects. Cue validity was varied between two separate experiments showing that non-predictive (14.3%) and moderately-predictive cues (50%) equally facilitate stimulus identification and localization during transient involuntary attention capture. Observers had improved accuracy at identifying both the location and the feature identity of target letters throughout a range of contrast levels, without any dependence on backward masking. There was a leftward shift of the psychometric function threshold with valid cued data and no slope reduction suggesting that any additive hypothesis based on spatial uncertainty reduction or perceptual enhancement is not a sufficient explanation for the observed cueing effects. The interdependence of the perceptual processes of stimulus discrimination and localization were also investigated by analyzing response contingencies, showing that observers were equally skilled at making identification and localization accuracy judgments with unmasked stimuli.


Subject(s)
Attention/physiology , Visual Perception/physiology , Adult , Analysis of Variance , Cues , Discrimination, Psychological , Female , Humans , Judgment , Male , Photic Stimulation/methods , Reaction Time/physiology , Reading , Space Perception/physiology , Young Adult
5.
Invest Ophthalmol Vis Sci ; 55(4): 2020-30, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24550359

ABSTRACT

PURPOSE: We investigated whether perceptual learning in adults with amblyopia could be enabled to transfer completely to an orthogonal orientation, which would suggest that amblyopic perceptual learning results mainly from high-level cognitive compensation, rather than plasticity in the amblyopic early visual brain. METHODS: Nineteen adults (mean age = 22.5 years) with anisometropic and/or strabismic amblyopia were trained following a training-plus-exposure (TPE) protocol. The amblyopic eyes practiced contrast, orientation, or Vernier discrimination at one orientation for six to eight sessions. Then the amblyopic or nonamblyopic eyes were exposed to an orthogonal orientation via practicing an irrelevant task. Training was first performed at a lower spatial frequency (SF), then at a higher SF near the cutoff frequency of the amblyopic eye. RESULTS: Perceptual learning was initially orientation specific. However, after exposure to the orthogonal orientation, learning transferred to an orthogonal orientation completely. Reversing the exposure and training order failed to produce transfer. Initial lower SF training led to broad improvement of contrast sensitivity, and later higher SF training led to more specific improvement at high SFs. Training improved visual acuity by 1.5 to 1.6 lines (P < 0.001) in the amblyopic eyes with computerized tests and a clinical E acuity chart. It also improved stereoacuity by 53% (P < 0.001). CONCLUSIONS: The complete transfer of learning suggests that perceptual learning in amblyopia may reflect high-level learning of rules for performing a visual discrimination task. These rules are applicable to new orientations to enable learning transfer. Therefore, perceptual learning may improve amblyopic vision mainly through rule-based cognitive compensation.


Subject(s)
Amblyopia/physiopathology , Cognition/physiology , Learning/physiology , Visual Perception/physiology , Adult , Amblyopia/psychology , Female , Humans , Male , Orientation/physiology , Photic Stimulation/methods , Psychophysics/methods , Visual Acuity , Young Adult
6.
Vision Res ; 89: 79-89, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23872240

ABSTRACT

There is controversy regarding whether or not involuntary attention improves response accuracy at a cued location when the cue is non-predictive and if these cueing effects are dependent on backward masking. Various perceptual and decisional mechanisms of performance enhancement have been proposed, such as signal enhancement, noise reduction, spatial uncertainty reduction, and decisional processes. Herein we review a recent report of mask-dependent accuracy improvements with low contrast stimuli and demonstrate that the experiments contained stimulus artifacts whereby the cue impaired perception of low contrast stimuli, leading to an absence of improved response accuracy with unmasked stimuli. Our experiments corrected these artifacts by implementing an isoluminant cue and increasing its distance relative to the targets. The results demonstrate that cueing effects are robust for unmasked stimuli presented in the periphery, resolving some of the controversy concerning cueing enhancement effects from involuntary attention and mask dependency. Unmasked low contrast and/or short duration stimuli as implemented in these experiments may have a short enough iconic decay that the visual system functions similarly as if a mask were present leading to improved accuracy with a valid cue.


Subject(s)
Attention/physiology , Visual Fields/physiology , Visual Perception/physiology , Adult , Contrast Sensitivity/physiology , Cues , Female , Humans , Male , Perceptual Masking/physiology , Photic Stimulation/methods , Psychometrics , Sensory Thresholds/physiology , Young Adult
7.
J Vis ; 13(2): 13, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23397038

ABSTRACT

We investigated suprathreshold binocular combination, measuring both the perceived phase and perceived contrast of a cyclopean sine wave. We used a paradigm adapted from Ding and Sperling (2006, 2007) to measure the perceived phase by indicating the apparent location (phase) of the dark trough in the horizontal cyclopean sine wave relative to a black horizontal reference line, and we used the same stimuli to measure perceived contrast by matching the binocular combined contrast to a standard contrast presented to one eye. We found that under normal viewing conditions (high contrast and long stimulus duration), perceived contrast is constant, independent of the interocular contrast ratio and the interocular phase difference, while the perceived phase shifts smoothly from one eye to the other eye depending on the contrast ratios. However, at low contrasts and short stimulus durations, binocular combination is more linear and contrast summation is phase-dependent. To account for phase-dependent contrast summation, we incorporated a fusion remapping mechanism into our model, using disparity energy to shift the monocular phases towards the cyclopean phase in order to align the two eyes' images through motor/sensory fusion. The Ding-Sperling model with motor/sensory fusion mechanism gives a reasonable account of the phase dependence of binocular contrast combination and can account for either the perceived phase or the perceived contrast of a cyclopean sine wave separately; however it requires different model parameters for the two. However, when fit to both phase and contrast data simultaneously, the Ding-Sperling model fails. Incorporating interocular gain enhancement into the model results in a significant improvement in fitting both phase and contrast data simultaneously, successfully accounting for both linear summation at low contrast energy and strong nonlinearity at high contrast energy.


Subject(s)
Contrast Sensitivity/physiology , Models, Theoretical , Vision, Binocular/physiology , Visual Cortex/physiology , Humans , Time Factors
8.
J Vis ; 13(2): 14, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23397039

ABSTRACT

We investigated suprathreshold binocular combination in humans with abnormal binocular visual experience early in life. In the first experiment we presented the two eyes with equal but opposite phase shifted sine waves and measured the perceived phase of the cyclopean sine wave. Normal observers have balanced vision between the two eyes when the two eyes' images have equal contrast (i.e., both eyes contribute equally to the perceived image and perceived phase = 0°). However, in observers with strabismus and/or amblyopia, balanced vision requires a higher contrast image in the nondominant eye (NDE) than the dominant eye (DE). This asymmetry between the two eyes is larger than predicted from the contrast sensitivities or monocular perceived contrast of the two eyes and is dependent on contrast and spatial frequency: more asymmetric with higher contrast and/or spatial frequency. Our results also revealed a surprising NDE-to-DE enhancement in some of our abnormal observers. This enhancement is not evident in normal vision because it is normally masked by interocular suppression. However, in these abnormal observers the NDE-to-DE suppression was weak or absent. In the second experiment, we used the identical stimuli to measure the perceived contrast of a cyclopean grating by matching the binocular combined contrast to a standard contrast presented to the DE. These measures provide strong constraints for model fitting. We found asymmetric interocular interactions in binocular contrast perception, which was dependent on both contrast and spatial frequency in the same way as in phase perception. By introducing asymmetric parameters to the modified Ding-Sperling model including interocular contrast gain enhancement, we succeeded in accounting for both binocular combined phase and contrast simultaneously. Adding binocular contrast gain control to the modified Ding-Sperling model enabled us to predict the results of dichoptic and binocular contrast discrimination experiments and provides new insights into the mechanisms of abnormal binocular vision.


Subject(s)
Amblyopia/physiopathology , Contrast Sensitivity/physiology , Discrimination, Psychological/physiology , Strabismus/physiopathology , Vision, Binocular/physiology , Adult , Humans , Sensory Thresholds
9.
PLoS One ; 7(11): e48761, 2012.
Article in English | MEDLINE | ID: mdl-23144959

ABSTRACT

Although most instances of object recognition during natural viewing occur in the presence of saccades, the neural correlates of objection recognition have almost exclusively been examined during fixation. Recent studies have indicated that there are post-saccadic modulations of neural activity immediately following eye movement landing; however, whether post-saccadic modulations affect relatively late occurring cognitive components such as the P3 has not been explored. The P3 as conventionally measured at fixation is commonly used in brain computer interfaces, hence characterizing the post-saccadic P3 could aid in the development of improved brain computer interfaces that allow for eye movements. In this study, the P3 observed after saccadic landing was compared to the P3 measured at fixation. No significant differences in P3 start time, temporal persistence, or amplitude were found between fixation and saccade trials. Importantly, sensory neural responses canceled in the target minus distracter comparisons used to identify the P3. Our results indicate that relatively late occurring cognitive neural components such as the P3 are likely less sensitive to post saccadic modulations than sensory neural components and other neural activity occurring shortly after eye movement landing. Furthermore, due to the similarity of the fixation and saccade P3, we conclude that the P3 following saccadic landing could possibly be used as a viable signal in brain computer interfaces allowing for eye movements.


Subject(s)
Fixation, Ocular/physiology , Saccades/physiology , Eye Movements/physiology , Female , Humans , Male , Photic Stimulation
10.
J Neurophysiol ; 107(6): 1776-90, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22170971

ABSTRACT

Studying neural activity during natural viewing conditions is not often attempted. Isolating the neural response of a single saccade is necessary to study neural activity during natural viewing; however, the close temporal spacing of saccades that occurs during natural viewing makes it difficult to determine the response to a single saccade. Herein, a general linear model (GLM) approach is applied to estimate the EEG neural saccadic response for different segments of the saccadic main sequence separately. It is determined that, in visual search conditions, neural responses estimated by conventional event-related averaging are significantly and systematically distorted relative to GLM estimates due to the close temporal spacing of saccades during visual search. Before the GLM is applied, analyses are applied that demonstrate that saccades during visual search with intersaccadic spacings as low as 100-150 ms do not exhibit significant refractory effects. Therefore, saccades displaying different intersaccadic spacings during visual search can be modeled using the same regressor in a GLM. With the use of the GLM approach, neural responses were separately estimated for five different ranges of saccade amplitudes during visual search. Occipital responses time locked to the onsets of saccades during visual search were found to account for, on average, 79 percent of the variance of EEG activity in a window 90-200 ms after the onsets of saccades for all five saccade amplitude ranges that spanned a range of 0.2-6.0 degrees. A GLM approach was also used to examine the lateralized ocular artifacts associated with saccades. Possible extensions of the methods presented here to account for the superposition of microsaccades in event-related EEG studies conducted in nominal fixation conditions are discussed.


Subject(s)
Cerebral Cortex/physiology , Neurons/physiology , Reaction Time/physiology , Saccades/physiology , Adult , Electroencephalography , Female , Humans , Male , Photic Stimulation , Visual Perception/physiology
11.
Vision Res ; 61: 33-8, 2012 May 15.
Article in English | MEDLINE | ID: mdl-21820004

ABSTRACT

Location-specific perceptual learning can be rendered transferrable to a new location with double training, in which feature training (e.g., contrast) is accompanied by additional location training at the new location even with an irrelevant task (e.g. orientation). Here we investigated the impact of relevancy (to feature training) and demand of location training tasks on double training enabled learning transfer. We found that location training with an irrelevant task (Gabor vs. letter judgment, or contrast discrimination) limited transfer of Vernier learning to the trained orientation only. However, performing a relevant suprathreshold orthogonal Vernier task prompted additional transfer to an untrained orthogonal orientation. In addition, the amount of learning transfer may depend on the demand of location training as well as the double training procedure. These results characterize how double training potentiates the functional connections between a learned high-level decision unit and visual inputs from an untrained location to enable transfer of learning across retinal locations.


Subject(s)
Learning/physiology , Visual Perception/physiology , Contrast Sensitivity/physiology , Discrimination Learning/physiology , Humans , Photic Stimulation/methods , Sensory Thresholds/physiology
12.
J Neurosci ; 30(37): 12323-8, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20844128

ABSTRACT

Visual perceptual learning models, as constrained by orientation and location specificities, propose that learning either reflects changes in V1 neuronal tuning or reweighting specific V1 inputs in either the visual cortex or higher areas. Here we demonstrate that, with a training-plus-exposure procedure, in which observers are trained at one orientation and either simultaneously or subsequently passively exposed to a second transfer orientation, perceptual learning can completely transfer to the second orientation in tasks known to be orientation-specific. However, transfer fails if exposure precedes the training. These results challenge the existing specific perceptual learning models by suggesting a more general perceptual learning process. We propose a rule-based learning model to explain perceptual learning and its specificity and transfer. In this model, a decision unit in high-level brain areas learns the rules of reweighting the V1 inputs through training. However, these rules cannot be applied to a new orientation/location because the decision unit cannot functionally connect to the new V1 inputs that are unattended or even suppressed after training at a different orientation/location, which leads to specificity. Repeated orientation exposure or location training reactivates these inputs to establish the functional connections and enable the transfer of learning.


Subject(s)
Cognition/physiology , Learning/physiology , Models, Neurological , Orientation/physiology , Teaching/methods , Visual Cortex/physiology , Visual Perception/physiology , Animals , Discrimination, Psychological/physiology , Humans , Photic Stimulation , Teaching/trends
13.
Vision Res ; 50(4): 368-74, 2010 Feb 22.
Article in English | MEDLINE | ID: mdl-19716377

ABSTRACT

Perceptual learning of orientation discrimination is reported to be precisely specific to the trained retinal location. This specificity is often taken as evidence for localizing the site of orientation learning to retinotopic cortical areas V1/V2. However, the extant physiological evidence for training improved orientation turning in V1/V2 neurons is controversial and weak. Here we demonstrate substantial transfer of orientation learning across retinal locations, either from the fovea to the periphery or amongst peripheral locations. Most importantly, we found that a brief pretest at a peripheral location before foveal training enabled complete transfer of learning, so that additional practice at that peripheral location resulted in no further improvement. These results indicate that location specificity in orientation learning depends on the particular training procedures, and is not necessarily a genuine property of orientation learning. We suggest that non-retinotopic high brain areas may be responsible for orientation learning, consistent with the extant neurophysiological data.


Subject(s)
Learning/physiology , Orientation/physiology , Retina/physiology , Visual Perception/physiology , Discrimination, Psychological/physiology , Female , Humans , Male , Neurons/physiology , Visual Cortex/physiology , Visual Fields/physiology , Young Adult
14.
Neuroimage ; 49(3): 2494-502, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-19778621

ABSTRACT

Primate neocortex contains over 30 visual areas. Recent techniques such as functional magnetic resonance imaging (fMRI) have successfully identified many of these areas in the human brain, but have been of limited value for revealing the temporal dynamics between visual areas. The electroencephalogram (EEG) provides information with high temporal precision, but has had limited success separating out the signals from individual neighboring cortical areas. Consequently, controversies exist over the temporal dynamics across cortical areas. In order to address this problem we developed a new method to identify the sources of the EEG. An individual's unique cortical pattern of sulci and gyri along with a visual area's functional retinotopic layout provides a folding fingerprint that predicts specific scalp topographies for stimuli presented in different parts of the visual field. Using this folding fingerprint with a 96 or 192 location stimulus severely constrains the solution space making it relatively easy to extract the temporal response of multiple visual areas to multiple stimulus locations. The large number of stimuli also provides a means to validate the waveforms by comparing across stimulus sets, an important feature not present in most EEG source identification procedures. Using this method our data reveal that both V1 and V2 waveforms have similar onset latencies, and their temporal dynamics provide new information regarding the response latencies of these areas in humans. Our method enables the previously unattainable separation of EEG responses from neighboring brain areas. While we applied the method to the first two cortical visual areas, V1 and V2, this method is also applicable to somatosensory areas that have defined mappings. This method provides a means to study the rapid information flow in the human brain to reveal top-down and bottom-up cognitive processes.


Subject(s)
Brain Mapping/methods , Electroencephalography , Signal Processing, Computer-Assisted , Visual Cortex/anatomy & histology , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Male
15.
J Opt Soc Am A Opt Image Sci Vis ; 26(11): B110-26, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19884912

ABSTRACT

Fifty years ago Birdsall, Tanner, and colleagues made rapid progress in developing signal detection theory into a powerful psychophysical tool. One of their major insights was the utility of adding external noise to the signals of interest. These methods have been enhanced in recent years by the addition of multipass and classification-image methods for opening up the black box. There remain a number of as yet unresolved issues. In particular, Birdsall developed a theorem that large amounts of external input noise can linearize nonlinear systems, and Tanner conjectured, with mathematical backup, that what had been previously thought of as a nonlinear system could actually be a linear system with uncertainty. Recent findings, both experimental and theoretical, have validated Birdsall's theorem and Tanner's conjecture. However, there have also been experimental and theoretical findings with the opposite outcome. In this paper we present new data and simulations in an attempt to sort out these issues. Our simulations and experiments plus data from others show that Birdsall's theorem is quite robust. We argue that uncertainty can serve as an explanation for violations of Birdsall's linearization by noise and also for reports of stochastic resonance. In addition, we modify present models to better handle detection of signals with both noise and pedestal backgrounds.


Subject(s)
Optics and Photonics , Psychophysics/methods , Acoustic Stimulation/methods , Artifacts , Computer Simulation , Computers , Humans , Models, Neurological , Models, Theoretical , Nonlinear Dynamics , Sensory Thresholds , Signal Detection, Psychological , Stochastic Processes
16.
J Vis ; 9(1): 26.1-18, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-19271896

ABSTRACT

When the size of a letter stimulus is near the visual acuity limit of a human subject, details of the stimulus become unavailable due to ocular optical and neural filtering. In this study we tested the hypothesis that letter recognition near the acuity limit is dependent on more global features, which could be parsimoniously described by a few easy-to-visualize and perceptually meaningful low-order geometric moments (i.e., the ink area, variance, skewness, and kurtosis). We constructed confusion matrices from a large set of data (approximately 110,000 trials) for recognition of English letters and Chinese characters of various spatial complexities near their acuity limits. We found that a major portion of letter confusions reported by human subjects could be accounted for by a geometric moment model, in which letter confusions were quantified in a space defined by low-order geometric moments. This geometric moment model is universally applicable to recognition of visual patterns of various complexities near their acuity limits.


Subject(s)
Language , Models, Psychological , Pattern Recognition, Visual , Visual Acuity , Humans , Mathematics , Psychophysics
17.
Curr Biol ; 18(24): 1922-6, 2008 Dec 23.
Article in English | MEDLINE | ID: mdl-19062277

ABSTRACT

Practice improves discrimination of many basic visual features, such as contrast, orientation, and positional offset. Perceptual learning of many of these tasks is found to be retinal location specific, in that learning transfers little to an untrained retinal location. In most perceptual learning models, this location specificity is interpreted as a pointer to a retinotopic early visual cortical locus of learning. Alternatively, an untested hypothesis is that learning could occur in a central site, but it consists of two separate aspects: learning to discriminate a specific stimulus feature ("feature learning"), and learning to deal with stimulus-nonspecific factors like local noise at the stimulus location ("location learning"). Therefore, learning is not transferable to a new location that has never been location trained. To test this hypothesis, we developed a novel double-training paradigm that employed conventional feature training (e.g., contrast) at one location, and additional training with an irrelevant feature/task (e.g., orientation) at a second location, either simultaneously or at a different time. Our results showed that this additional location training enabled a complete transfer of feature learning (e.g., contrast) to the second location. This finding challenges location specificity and its inferred cortical retinotopy as central concepts to many perceptual-learning models and suggests that perceptual learning involves higher nonretinotopic brain areas that enable location transfer.


Subject(s)
Learning/physiology , Retina/physiology , Visual Perception/physiology , Discrimination Learning/physiology , Eye Movements/physiology , Humans , Models, Psychological , Visual Cortex/physiology , Visual Fields/physiology
18.
J Neurosci ; 28(52): 14223-9, 2008 Dec 24.
Article in English | MEDLINE | ID: mdl-19109504

ABSTRACT

Amblyopia is a developmental abnormality that results in physiological alterations in the visual cortex and impairs form vision. It is often successfully treated by patching the sound eye in infants and young children, but is generally considered to be untreatable in adults. However, a number of recent studies suggest that repetitive practice of a visual task using the amblyopic eye results in improved performance in both children and adults with amblyopia. These perceptual learning studies have used relatively brief periods of practice; however, clinical studies have shown that the time-constant for successful patching is long. The time-constant for perceptual learning in amblyopia is still unknown. Here we show that the time-constant for perceptual learning depends on the degree of amblyopia. Severe amblyopia requires >50 h (approximately equal to 35,000 trials) to reach plateau, yielding as much as a five-fold improvement in performance at a rate of approximately equal to 1.5%/h. There is significant transfer of learning from the amblyopic to the dominant eye, suggesting that the learning reflects alterations in higher decision stages of processing. Using a reverse correlation technique, we document, for the first time, a dynamic retuning of the amblyopic perceptual decision template and a substantial reduction in internal spatial distortion. These results show that the mature amblyopic brain is surprisingly malleable, and point to more intensive treatment methods for amblyopia.


Subject(s)
Amblyopia/physiopathology , Amblyopia/rehabilitation , Learning/physiology , Psychophysics/methods , Visual Acuity/physiology , Visual Perception/physiology , Adolescent , Adult , Discrimination, Psychological/physiology , Female , Humans , Male , Orientation , Photic Stimulation/methods , Time Factors , Visual Fields/physiology , Young Adult
19.
PLoS Biol ; 6(8): e197, 2008 Aug 12.
Article in English | MEDLINE | ID: mdl-18707195

ABSTRACT

Perceptual learning of visual features occurs when multiple stimuli are presented in a fixed sequence (temporal patterning), but not when they are presented in random order (roving). This points to the need for proper stimulus coding in order for learning of multiple stimuli to occur. We examined the stimulus coding rules for learning with multiple stimuli. Our results demonstrate that: (1) stimulus rhythm is necessary for temporal patterning to take effect during practice; (2) learning consolidation is subject to disruption by roving up to 4 h after each practice session; (3) importantly, after completion of temporal-patterned learning, performance is undisrupted by extended roving training; (4) roving is ineffective if each stimulus is presented for five or more consecutive trials; and (5) roving is also ineffective if each stimulus has a distinct identity. We propose that for multi-stimulus learning to occur, the brain needs to conceptually "tag" each stimulus, in order to switch attention to the appropriate perceptual template. Stimulus temporal patterning assists in tagging stimuli and switching attention through its rhythmic stimulus sequence.


Subject(s)
Conditioning, Operant , Learning/physiology , Visual Perception/physiology , Adult , Humans
20.
J Vis ; 8(4): 1.1-23, 2008 Apr 04.
Article in English | MEDLINE | ID: mdl-18484840

ABSTRACT

Amblyopia results in a loss of visual acuity, contrast sensitivity, and position acuity. However, the nature of the neural losses is not yet fully understood. Here we report the results of experiments using noise to try to better understand the losses in amblyopia. Specifically, in one experiment we compared the performance of normal, amblyopic, and ideal observers for detecting a localized signal (a discrete frequency pattern or DFP) in fixed contrast white noise. In a second experiment, we used visibility-scaled noise and varied both the visibility of the noise (from 2 to 20 times the noise detection threshold) and the spatial frequency of the signal. Our results show a loss of efficiency for detection of known signals in noise that increases with the spatial frequency of the signal in observers with amblyopia. To determine whether the loss of efficiency was a consequence of a mismatched template, we derived classification images. We found that although the amblyopic observers' template was shifted to lower spatial frequencies, the shift was insufficient to account for their threshold elevation. Reduced efficiency in the amblyopic visual system may reflect a high level of internal noise, a poorly matched position template, or both. To analyze the type of internal noise we used an "N-pass" technique, in which observers performed the identical experiment N times (where N = 3 or 4). The amount of disagreement between the repeated trials enables us to parse the internal noise into random noise and consistent noise beyond that due to the poorly matched template. Our results show that the amblyopes' reduced efficiency for detecting signals in noise is explained in part by reduced template efficiency but to a greater extent by increased random internal noise. This loss is more or less independent of external noise contrast over a log unit range of external noise.


Subject(s)
Amblyopia/physiopathology , Brain/physiopathology , Contrast Sensitivity/physiology , Form Perception/physiology , Adult , Amblyopia/psychology , Discrimination, Psychological , Female , Humans , Male , Middle Aged , Photic Stimulation , Psychophysics/methods , Sensory Thresholds , Severity of Illness Index , Space Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...