Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Rehabil Med ; 56: jrm40028, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850087

ABSTRACT

OBJECTIVE: Wheelchair basketball (WCB) demands high-intensity training due to its intermittent nature. However, acute oxygen uptake (V˙O2) in handcycling is restricted. Combining handcycling with low-frequency electromyostimulation (LF-EMS) may enhance V˙O2 in elite WBC athletes. DESIGN: Randomized crossover trail. SUBJECTS: Twelve German national team WCB players (age: 25.6 [5.6] years, height: 1.75 [0.16] m, mass: 74.0 [21.7] kg, classification: 2.92 [1.26]). METHOD: Participants underwent 2×5 min of handcycling (60 rpm, ¾ bodyweight resistance in watts) (HANDCYCLE) and 2×5 min of handcycling with concurrent LF-EMS (EMS_HANDCYCLE). LF-EMS (4Hz, 350µs, continuous stimulation) targeted gluteal, quadriceps, and calf muscles, adjusted to individual pain thresholds (buttocks: 69.5 [22.3] mA, thighs: 66.8 [20.0] mA, calves: 68.9 [31.5] mA). RESULTS: Significant mode-dependent differences between HANDCYCLE and EMS_HANDCYCLE were found in V˙O2 (17.60 [3.57] vs 19.23 [4.37] ml min-1 kg-1, p = 0.001) and oxygen pulse (16.69 [4.51] vs 18.41 [5.17] ml, p = 0.002). ΔLactate was significantly lower in HANDCYCLE (0.04 [0.28] vs 0.31 [0.26] mmol l-1). Although perceived effort did not differ (p = 0.293), discomfort was rated lower in HANDCYCLE (1.44 [1.28] vs 3.94 [2.14], p = 0.002). CONCLUSION: LF-EMS applied to the lower extremities increases oxygen demand during submaximal handcycling. Thus, longitudinal application of LF-EMS should be investigated as a potential training stimulus to improve aerobic capacity in wheelchair athletes.


Subject(s)
Basketball , Cross-Over Studies , Oxygen Consumption , Wheelchairs , Humans , Adult , Basketball/physiology , Oxygen Consumption/physiology , Male , Young Adult , Muscle, Skeletal/metabolism , Athletes
2.
J Sports Sci Med ; 22(2): 226-234, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37293409

ABSTRACT

The combination of strength training with complementary whole-body electromyostimulation (WB-EMS) and plyometric exercises has been shown to increase strength and jumping performance in athletes. In elite sport, however, the mesocycles of training are often organized according to block periodization. Furthermore, WB-EMS is often applied onto static strength exercises, which may hamper the transfer into more sport-specific tasks. Thus, this study aimed at investigating whether four weeks of strength training with complementary dynamic vs. static WB-EMS followed by a four-week block of plyometric training increases maximal strength and jumping performance. A total of n = 26 (13 female/13 male) trained adults (20.8 ± 2.2 years, 69.5 ± 9.5kg, 9.7 ± 6.1h of training/w) were randomly assigned to a static (STA) or volume-, load- and work-to-rest-ratio-matched dynamic training group (DYN). Before (PRE), after four weeks (three times weekly) of WB-EMS training (MID) and a subsequent four-week block (twice weekly) of plyometric training (POST), maximal voluntary contraction (MVC) at leg extension (LE), leg curl (LC) and leg press machines (LP) and jumping performance (SJ, Squat Jump; CMJ, counter-movement-jump; DJ, drop-jump) were assessed. Furthermore, perceived effort (RPE) was rated for each set and subsequently averaged for each session. MVC at LP notably increased between PRE and POST in both STA (2335 ± 539 vs. 2653 ± 659N, standardized mean difference [SMD] = 0.528) and DYN (2483 ± 714N vs. 2885 ± 843N, SMD = 0.515). Reactive strength index of DJ showed significant differences between STA and DYN at MID (162.2 ± 26.4 vs. 123.1 ± 26.5 cm·s-1, p = 0.002, SMD = 1.478) and POST (166.1 ± 28.0 vs. 136.2 ± 31.7 cm·s-1, p = 0.02, SMD = 0.997). Furthermore, there was a significant effect for RPE, with STA rating perceived effort higher than DYN (6.76 ± 0.32 vs. 6.33 ± 0.47 a.u., p = 0.013, SMD = 1.058). When employing a training block of high-density WB-EMS both static and dynamic exercises lead to similar adaptations.


Subject(s)
Electric Stimulation Therapy , Resistance Training , Adult , Humans , Male , Female , Exercise/physiology , Exercise Therapy , Weight Lifting
4.
Front Physiol ; 14: 1174103, 2023.
Article in English | MEDLINE | ID: mdl-37035684

ABSTRACT

Whole-Body Electromyostimulation (WB-EMS) is a training technology that enables simultaneous stimulation of all the main muscle groups with a specific impulse intensity for each electrode. The corresponding time-efficiency and joint-friendliness of WB-EMS may be particularly attractive for people unable or unmotivated to conduct (intense) conventional training protocols. However, due to the enormous metabolic and musculoskeletal impact of WB-EMS, particular attention must be paid to the application of this technology. In the past, several scientific and newspaper articles reported severe adverse effects of WB-EMS. To increase the safety of commercial non-medical WB-EMS application, recommendations "for safe and effective whole-body electromyostimulation" were launched in 2016. However, new developments and trends require an update of these recommendations to incorporate more international expertise with demonstrated experience in the application of WB-EMS. The new version of these consensus-based recommendations has been structured into 1) "general aspects of WB-EMS", 2) "preparation for training", recommendations for the 3) "WB-EMS application" itself and 4) "safety aspects during and after training". Key topics particularly addressed are 1) consistent and close supervision of WB-EMS application, 2) mandatory qualification of WB-EMS trainers, 3) anamnesis and corresponding consideration of contraindications prior to WB-EMS, 4) the participant's proper preparation for the session, 5) careful preparation of the WB-EMS novice, 6) appropriate regeneration periods between WB-EMS sessions and 7) continuous interaction between trainer and participant at a close physical distance. In summary, we are convinced that the present guideline will contribute to greater safety and effectiveness in the area of non-medical commercial WB-EMS application.

6.
Front Physiol ; 12: 664991, 2021.
Article in English | MEDLINE | ID: mdl-33927646

ABSTRACT

The aim of this multicenter trial was to compare the effects of whole-body electromyostimulation (WB-EMS) and whole-body vibration (WBV) with conventional back-strengthening training (CT) on changes in mean back pain intensity (MPI) and trunk strength in patients suffering from chronic non-specific low back pain (CNLBP). Two-hundred and forty CNLBP patients (40-70 years; 62% female) were randomly assigned to three intervention arms (WB-EMS: n = 80 vs. WBV: n = 80 vs. CT: n = 80). All training intervention programs were performed for 12 weeks in their usual commercial training setting. Before and during the last 4 weeks of the intervention, MPI was recorded using a 4-week pain diary. Additionally, maximal isometric trunk extension and -flexion strength was assessed on the BackCheck® machine. A moderate but significant decrease of MPI was observed in all groups (WB-EMS: 29.7 ± 39.1% (SMD 0.50) vs. WBV: 30.3 ± 39.3% (SMD 0.57) vs. CT: 30.5 ± 39.6% (SMD 0.59); p < 0.001). Similar findings were observed for maximal isometric strength parameters with a significant increase in all groups (extension: WB-EMS: 17.1 ± 25.5% vs. WBV: 16.2 ± 23.6% vs. CT: 21.6 ± 27.5%; p < 0.001; flexion: WB-EMS: 13.3 ± 25.6% vs. WBV: 13.9 ± 24.0% vs. CT: 13.9 ± 25.4%; p < 0.001). No significant interaction effects for MPI (p = 0.920) and strength parameters (extension: p = 0.436; flexion: p = 0.937) were observed. WB-EMS, WBV, and CT are comparably effective in improving MPI and trunk strength. However, training volume of WB-EMS was 43 or 62% lower, compared with CT and WBV.

7.
Front Physiol ; 12: 640657, 2021.
Article in English | MEDLINE | ID: mdl-33716787

ABSTRACT

This systematic review and meta-analysis set out to determine the efficacy on whole-body electromyostimulation (WB-EMS) on body composition and strength parameters in non-athletic cohorts. A systematic review of the literature according to the PRISMA statement included (a) controlled trials, (b) WB-EMS trials with at least one exercise and one control group, (c) WB-EMS as primary physical intervention, (d) WB-EMS with at least six electrodes covering most muscle groups, (e) non-athletic cohorts. We searched eight electronic databases up to June 30, 2020, without language restrictions. Standardized mean differences (SMD) for muscle mass parameters, total body fat mass, maximum leg extension, and trunk extension strength were defined as outcome measures. In summary, 16 studies with 19 individual WB-EMS groups representing 897 participants were included. Studies vary considerably with respect to age, BMI, and physical conditions. Impulse protocols of the studies were roughly comparable, but training frequency (1-5 sessions/week) and intervention length (6-54 weeks) differed between the studies. SMD average was 1.23 (95%-CI: 0.71-1.76) for muscle mass, 0.98 (0.74-1.22) for maximum leg, and 1.08 (0.78-1.39) for maximum trunk extension strength changes (all p < 0.001). SMD for body fat changes (-0.40, [-0.98 to 0.17]), however, did not reach significance. I 2 and Q-statistics revealed substantial heterogeneity of muscle and fat mass changes between the trials. However, rank and regression tests did not indicate positive evidence for small-study bias and funnel plot asymmetries. This work provided further evidence for significant, large-sized effects of WB-EMS on muscle mass and strength parameters, but not on body fat mass. Clinical Trial Registration: ClinicalTrials.gov, PROSPERO; ID: CRD42020183059.

9.
Biomed Res Int ; 2019: 5745409, 2019.
Article in English | MEDLINE | ID: mdl-31687394

ABSTRACT

BACKGROUND: Low back pain (LBP) affects almost everyone at least once in their lifetime. Various meta-analyses show promising effects on pain reduction for conventional exercise. However, the lack of time and, especially for pain patients, a fear of movement ("kinesiophobia") as well as functional limitations often oppose participation in such activities. In contrast, the advantage of novel training technologies like whole-body electromyostimulation (WB-EMS) lies particularly in a joint-friendly, time-effective, and highly customized training protocol and might be an alternative option for LBP patients. A meta-analysis of individual patient data and a comparison of WB-EMS against a passive control group confirmed the proof principle. Thus, the aim of this randomized controlled trial is to compare WB-EMS with a recognized back-strengthening exercise protocol to determine the corresponding effects on chronic, nonspecific LBP in people suffering from this. METHODS AND FINDINGS: This randomized, controlled multicenter study is focused on novel and time-effective training technologies and LBP. In this contribution, the focus is primarily on the comparison of WB-EMS against a comparable conventional exercise training (CT). One hundred ten nonspecific chronic LBP patients, 40-70 years old, were randomly allocated to the intervention arms (WB-EMS: 55 vs. CT: 55). Both groups completed a 12-week program (WB-EMS: 1 × 20 min/week vs. CT: 1 × 45 min/week) specifically dedicated to LBP. The selection of the content of the active control group was based on the principles of WB-EMS training, which uses electrical stimulation to train mainly strength and stabilization in a very short time. Exercises were similar in all groups, with the focus on strengthening and stabilizing the trunk. Outcome measures were assessed by a four-week pain diary (before and during the last four weeks of intervention) as well as an isometric maximum strength measurement of the trunk muscles at baseline and after 12 weeks of intervention. Primary study endpoint was average pain intensity at the lumbar spine. Secondary study endpoints were maximum isometric strength of the back and the abdominals. The mean pain intensity of LBP decreased significantly in both groups (WB-EMS: -22.3 ± 20.9% vs. CT: -30.2 ± 43.9%; p < 0.001), however, without significant intergroup difference (p=0.160). A similar result was observed for "maximum isometric strength of trunk muscles." The increase in back strength (WB-EMS: 15.6 ± 24.9% vs. CT: 23.0 ± 30.9%) was highly significant in both groups (p=0.001), and similar changes were observed for the trunk flexors (WB-EMS: 17.6 ± 24.8% vs. CT: 18.1 ± 24.8%). Also, at the secondary endpoint, no significant difference in pairwise comparison was observed in both cases (extension: p=0.297; flexion: p=0.707). CONCLUSION: In summary, both, WB-EMS and conventional back-strengthening protocol are comparably effective in reducing nonspecific chronic LBP in this dedicated cohort. The result is particularly positive in terms of time effectiveness and offers an adequate alternative for people with limited time resources or other barriers to conventional training methods.


Subject(s)
Electric Stimulation/methods , Exercise Therapy/methods , Exercise/physiology , Low Back Pain/physiopathology , Low Back Pain/therapy , Adult , Aged , Body Composition/physiology , Electric Stimulation Therapy/methods , Female , Humans , Male , Middle Aged , Movement/physiology , Muscle, Skeletal/physiopathology
10.
Front Physiol ; 10: 1336, 2019.
Article in English | MEDLINE | ID: mdl-31780950

ABSTRACT

Background: Whole-body electromyostimulation (WB-EMS) gained increasing interest in sports within recent years. However, few intervention studies have examined the effects of WB-EMS on trained subjects in comparison to conventional strength training. Objective: The aim of the present mini-meta-analysis of 5 recently conducted and published randomized controlled WB-EMS trails of our work group was to evaluate potentially favorable effects of WB-EMS in comparison to conventional strength training. Methods: We included parameter of selected leg muscle's strength and power as well as sprint and jump performance. All subjects were moderately trained athletes [>2 training sessions/week, >2 years of experience in strength training; experimental group (n = 58): 21.5 ± 3.3 y; 178 ± 8 cm; 74.0 ± 11 kg; control group (n = 54): 21.0 ± 2.3 y; 179.0 ± 9 cm; 72.6 ± 10 kg]. The following WB-EMS protocols were applied to the experimental group (EG): 2 WB-EMS sessions/week, bipolar current superimposed to dynamic exercises, 85 Hz, 350 µs, 70% of the individual pain threshold amperage. The control groups (CG) underwent the same training protocols without WB-EMS, but with external resistance. Results: Five extremely homogenous studies (all studies revealed an I 2 = 0%) with 112 subjects in total were analyzed with respect to lower limb strength and power in leg curl, leg extension and leg press machines, sprint-and jump performance. Negligible effects in favor of WB-EMS were found for Fmax of leg muscle groups [SMD: 0.11 (90% CI: -0.08, 0.33), p = 0.73, I 2 = 0%] and for CMJ [SMD: 0.01 (90% CI: -0.34, 0.33), p = 0.81, I 2 = 0%]. Small effects, were found for linear sprint [SMD: 0.22 (90% CI: -0.15, 0.60), p = 0.77, I 2 = 0%] in favor of the EMS-group compared to CON. Conclusion: We conclude that WB-EMS is a feasible complementary training stimulus for performance enhancement. However, additional effects on strength and power indices seem to be limited and sprint and jump-performance appear to be benefiting only slightly. Longer training periods and more frequent application times and a slightly larger stimulus could be investigated in larger samples to further elucidate beneficial effects of WB-EMS on performance parameters in athletes.

11.
Front Physiol ; 10: 1012, 2019.
Article in English | MEDLINE | ID: mdl-31456693

ABSTRACT

Purpose: Overweight and obesity are an increasing problem worldwide. However, most studies that focus on weight reduction by energy restriction and/or aerobic exercise reported considerable loss of muscle mass as well. Increased protein intake and/or resistance exercise might inhibit this detrimental effect during a negative energy balance. Whole-body electromyostimulation (WB-EMS), a time effective, joint-friendly, and highly customizable training technology, showed similar hypertrophic effects compared with high-intensity resistance training. The aim of this study is to evaluate the effect of WB-EMS on body composition during negative energy balance with maintained/increased protein intake in overweight premenopausal women. Patients and Methods: Ninety premenopausal, 25-50-year-old, overweight women were randomly assigned to three groups (n = 30 each). (1) Negative energy balance (-500 kcal/day) by energy restriction with compensatory protein intake (CG). (2) Negative energy balance (-500 kcal/day) by energy restriction (-250 kcal/day) and increased physical activity (-250 kcal/day) with increased protein intake (PA). (3) Negative energy balance (-500 kcal/day) due to energy restriction and increased physical activity with increased protein intake plus WB-EMS. The duration of the intervention was 16 weeks. Participants underwent restrictions in kcal per days and supplementation of protein (CG: 1.2 or PA/WB-EMS: 1.7 g/kg body mass/day) where needed. Bipolar WB-EMS was applied 1.5× week for 20 min (85 Hz; 350 µs; intermittent 6 s impulse, 4 s rest; rectangular). The primary study endpoint "lean body mass" (LBM) and secondary endpoint body fat mass (BFM) were assessed by bio-impedance analysis (BIA). Results: LBM decreased in the CG and PA group (CG: -113 ± 1,872 g; PA: -391 ± 1,832 g) but increased in the WB-EMS group (387 ± 1,769 g). However, changes were not significant (p > 0.05). Comparing the groups by ANOVA, no significant differences were observed (p = 0.070). However, pairwise adjusted comparisons determined significant differences between WB-EMS and PA (p = 0.049). BFM decreased significantly (p < 0.001) in all groups (CG: -2,174 ± 4,331 g; PA: -3,743 ± 4,237 g; WB-EMS: -3,278 ± 4,023 g) without any significant difference between the groups (ANOVA: p = 0.131). Conclusion: WB-EMS is an efficient, joint-friendly, and highly customizable training technology for maintaining muscle mass during energy restriction and can thus be considered as an alternative to more demanding resistance exercise protocols.

12.
Front Physiol ; 10: 728, 2019.
Article in English | MEDLINE | ID: mdl-31316389

ABSTRACT

The aim of this study was to compare the effects of short-term strength training with and without superimposed whole-body electromyostimulation (WB-EMS) on straight sprinting speed (SSS), change of direction speed (CODS), vertical and horizontal jumping, as well as on strength and power in physically active females. Twenty-two active female participants (n = 22; mean ± SD: age: 20.5 ± 2.3 years; height: 171.9 ± 5.5 cm; body mass: 64.0 ± 8.2 kg; strength training experience 5.1 ± 3.6 years) were randomly assigned to two groups: strength training (S) or strength training with superimposed WB-EMS (S+E). Both groups trained twice a week over a period of 4 weeks and differed in the application of free weights or WB-EMS during four strength (e.g., split squats, glute-ham raises) and five sprinting and jumping exercises (e.g., side and box jumps, skippings). The WB-EMS impulse intensity was adjusted to 70% of individual maximal sustainable pain. SSS was tested via 30-m sprinting, CODS by a T-run, vertical and horizontal jumping using four different jump tests at pre-, post-, and retests. Maximal strength (Fmax) and power (Pmax) testing procedures were conducted on the Leg Press (LP), Leg Extension (LE), and Leg Curl (LC) machine. Significant time × group interaction effects revealed significant decreases of contact time of the Drop Jump and split time of CODS (p ≤ 0.043; η p 2 = 0.15-0.25) for S (≤ 11.6%) compared to S+E (≤ 5.7%). Significant time effects (p < 0.024; η p 2 = 0.17-0.57) were observed in both groups for SSS (S+E: ≤6.3%; S: ≤8.0%) and CODS (S+E: ≤1.8%; S: ≤2.0%) at retest, for jump test performances (S+E: ≤13.2%; S: ≤9.2%) as well as Fmax and Pmax for LE (S+E: ≤13.5%; S: ≤13.3%) and LC (S+E: ≤18.2%; S: ≤26.7%) at post- and retests. The findings of this study indicate comparable effects of short-term strength training with and without superimposed WB-EMS on physical fitness in physically active females. Therefore, WB-EMS training could serve as a reasonable but not superior alternative to classic training regimes in female exercisers.

13.
Front Physiol ; 9: 1719, 2018.
Article in English | MEDLINE | ID: mdl-30568596

ABSTRACT

The purpose of this study was to assess the effects of dynamic superimposed submaximal whole-body electromyostimulation (WB-EMS) training on maximal strength and power parameters of the leg muscles compared with a similar dynamic training without WB-EMS. Eighteen male sport students were randomly assigned either to a WB-EMS intervention (INT; n = 9; age: 28.8 (SD: 3.0) years; body mass: 80.2 (6.6) kg; strength training experience: 4.6 (2.8) years) or a traditional strength training group (CON; n = 9; age: 22.8 (2.5) years; body mass: 77.6 (9.0) kg; strength training experience: 4.5 (2.9) years). Both training intervention programs were performed twice a week over a period of 8 weeks with the only difference that INT performed all dynamic exercises (e.g., split squats, glute-ham raises, jumps, and tappings) with superimposed WB-EMS. WB-EMS intensity was adjusted to 70% of the individual maximal tolerable pain to ensure dynamic movement. Before (PRE), after (POST) and 2 weeks after the intervention (FU), performance indices were assessed by maximal strength (Fmax) and maximal power (Pmax) testing on the leg extension (LE), leg curl (LC), and leg press (LP) machine as primary endpoints. Additionally, vertical and horizontal jumps and 30 m sprint tests were conducted as secondary endpoints at PRE, POST and FU testing. Significant time effects were observed for strength and power parameters on LE and LC (LE Fmax +5.0%; LC Pmax +13.5%). A significant time × group interaction effect was merely observed for Fmax on the LE where follow-up post hoc testing showed significantly higher improvements in the INT group from PRE to POST and PRE to FU (INT: +7.7%, p < 0.01; CON: +2.1%). These findings indicate that the combination of dynamic exercises and superimposed submaximal WB-EMS seems to be effective in order to improve leg strength and power. However, in young healthy adults the effects of superimposed WB-EMS were similar to the effects of dynamic resistance training without EMS, with the only exception of a significantly greater increase in leg extension Fmax in the WB-EMS group.

14.
J Pain Res ; 11: 1949-1957, 2018.
Article in English | MEDLINE | ID: mdl-30288089

ABSTRACT

PURPOSE: Low back pain (LBP) is one of the most frequent chronic conditions worldwide. Data from a recent meta-analysis indicated that whole-body electromyostimulation (WB-EMS), a time-effective, joint-friendly, and highly individualized training technology, demonstrated promising effects on LBP; however, methodologic limitations prevent definitive evidence for this result. Thus, the aim of this study was to conduct a randomized controlled WB-EMS trial to determine the corresponding effect on chronic, nonspecific LBP in people with chronic LBP. PATIENTS AND METHODS: Thirty LBP patients, 40-70 years old, were randomly assigned into two groups (WB-EMS: 15; control [CG]: 15). While the nonactive CG maintained their lifestyle, the WB-EMS group completed a 12-week WB-EMS protocol (1×20 min/week) with slight movements, specifically dedicated to LBP. Pain intensity and frequency were determined by a 4-week pain diary before and during the last 4 weeks of intervention. Primary study endpoint was average pain intensity at the lumbar spine. RESULTS: At baseline, no group differences apart from nonregular exercise were observed. Mean intensity of LBP decreased significantly in the WB-EMS group (P=0.002) and remained unchanged in the CG (P=0.730), with a significant difference between both groups (P=0.027). Maximum isometric trunk extensors improved significantly in the WB-EMS group (P=0.005), while no significant difference was seen in the CG (P=0.683). In contrast to the significant difference between WB-EMS group and CG for the latter parameter (P=0.038), no intergroup difference was determined for maximum isometric trunk flexors (P=0.091). The WB-EMS group showed a significant increase of this parameter (P=0.003), while no significant change was determined in the CG (P=0.563). CONCLUSION: WB-EMS is a time-effective training method for reducing chronic nonspecific LBP and increasing maximum trunk strength in people with such complaints. After this promising comparison with a nonactive CG, research needs to be extended to include comparisons with active groups (WB-Vibration, conventional back strengthening).

15.
Front Physiol ; 9: 573, 2018.
Article in English | MEDLINE | ID: mdl-29875684

ABSTRACT

Exercise positively affects most risk factors, diseases and disabling conditions of middle to advanced age, however the majority of middle-aged to older people fall short of the exercise doses recommended for positively affecting cardio-metabolic, musculoskeletal and neurophysiological fitness or disabling conditions. Whole-Body Electromyostimulation (WB-EMS) may be a promising exercise technology for people unable or unmotivated to exercise conventionally. However, until recently there has been a dearth of evidence with respect to WB-EMS-induced effects on health-related outcomes. The aim of this systematic review is to summarize the effects, limitations and risks of WB-EMS as a preventive or therapeutic tool for non-athletic adults. Electronic searches in PubMed, Scopus, Web of Science, PsycINFO, Cochrane and Eric were run to identify randomized controlled trials, non-randomized controlled trials, meta-analyses of individual patient data and peer reviewed scientific theses that examined (1) WB-EMS-induced changes of musculoskeletal risk factors and diseases (2) WB-EMS-induced changes of functional capacity and physical fitness (3) WB-EMS-induced changes of cardio-metabolic risk factors and diseases (4) Risk factors of WB-EMS application and adverse effects during WB-EMS interventions. Two researchers independently reviewed articles for eligibility and methodological quality. Twenty-three eligible research articles generated by fourteen research projects were finally included. In summary, thirteen projects were WB-EMS trials and one study was a meta-analysis of individual patient data. WB-EMS significantly improves muscle mass and function while reducing fat mass and low back pain. Although there is some evidence of a positive effect of WB-EMS on cardio-metabolic risk factors, this aspect requires further detailed study. Properly applied and supervised, WB-EMS appears to be a safe training technology. In summary, WB-EMS represents a safe and reasonable option for cohorts unable or unwilling to join conventional exercise programs. However, much like all other types of exercise, WB-EMS does not affect every aspect of physical performance and health.

16.
Article in English | MEDLINE | ID: mdl-29234437

ABSTRACT

In order to evaluate the favorable effect of whole-body electromyostimulation (WB-EMS) on low back pain (LBP), an aspect which is frequently claimed by commercial providers, we performed a meta-analysis of individual patient data. The analysis is based on five of our recently conducted randomized controlled WB-EMS trials with adults 60 years+, all of which applied similar WB-EMS protocols (1.5 sessions/week, bipolar current, 16-25 min/session, 85 Hz, 350 µs, and 4-6 s impulse/4 s impulse-break) and used the same pain questionnaire. From these underlying trials, we included only subjects with frequent-chronic LBP in the present meta-analysis. Study endpoints were pain intensity and frequency at the lumbar spine. In summary, 23 participants of the underlying WB-EMS and 22 subjects of the control groups (CG) were pooled in a joint WB-EMS and CG. At baseline, no group differences with respect to LBP intensity and frequency were observed. Pain intensity improved significantly in the WB-EMS (p < .001) and was maintained (p = .997) in the CG. LBP frequency decreased significantly in the WB-EMS (p < .001) and improved nonsignificantly in the CG (p = .057). Group differences for both LBP parameters were significant (p ≤ .035). We concluded that WB-EMS appears to be an effective training tool for reducing LBP; however, RCTs should further address this issue with more specified study protocols.

17.
Muscles Ligaments Tendons J ; 7(1): 186-191, 2017.
Article in English | MEDLINE | ID: mdl-28717628

ABSTRACT

BACKGROUND: The aim of the study was to determine whether a combination of strength training (ST) and local vibration (LV) improved the isometric maximum force of arm flexor muscles. ST was applied to the left arm of the subjects; LV was applied to the right arm of the same subjects. The main aim was to examine the effect of LV during a dumbbell biceps curl (Scott Curl) on isometric maximum force of the opposite muscle among the same subjects. It is hypothesized, that the intervention with LV produces a greater gain in isometric force of the arm flexors than ST. METHODS: Twenty-seven collegiate students participated in the study. The training load was 70% of the individual 1 RM. Four sets with 12 repetitions were performed three times per week during four weeks. The right arm of all subjects represented the vibration trained body side (VS) and the left arm served as the traditional trained body side (TTS). RESULTS: A significant increase of isometric maximum force in both body sides (Arms) occurred. VS, however, significantly increased isometric maximum force about 43% in contrast to 22% of the TTS. CONCLUSION: The combined intervention of ST and LC improves isometric maximum force of arm flexor muscles. LEVEL OF EVIDENCE: III.

18.
J Sports Sci Med ; 15(4): 639-648, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27928210

ABSTRACT

The aim of the present study was to investigate the effect of a 14-week dynamic Whole-Body Electrostimulation (WB-EMS) training program on muscular strength, soccer relevant sprint, jump and kicking velocity performance in elite soccer players during competitive season. Twenty-two field-players were assigned to 2 groups: WB-EMS group (EG, n = 12), jump-training group (TG, n = 10). The training programs were conducted twice a week concurrent to 6-7 soccer training sessions during the 2nd half of the season. Participants were tested before (baseline), during (wk-7) and after (wk-14). Blood serum samples for analyzing IGF-1 and CK were taken before each testing, 15-30min post and 24h post the training program. Our findings of the present study were that a 14-week in-season WB-EMS program significant increased one-leg maximal strength (1RM) at the leg press machine (1.99 vs. 1.66 kg/kg, p = 0.001), and improved linear sprinting (5m: 1.01 vs. 1.04s, p=0.039), sprinting with direction changes (3.07 vs. 3.25s, p = 0.024), and vertical jumping performance (SJ: 38.8 vs. 35.9cm p = 0.021) as well as kicking velocity (1step: 93.8 vs. 83.9 km·h-1, p < 0.001). The TG showed no changes in strength and performance. The EG revealed significantly increased CK levels 24h post training and yielded significantly higher CK levels compared to the TG. IGF-1 serum levels neither changed in the EG nor in the TG. The results give first hints that two sessions of a dynamic WB-EMS training in addition to 6-7 soccer sessions per week can be effective for significantly enhancing soccer relevant performance capacities in professional players during competitive season.

19.
J Strength Cond Res ; 29(9): 2570-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26308832

ABSTRACT

Red blood cell-nitric oxide synthase (RBC-NOS)-dependent NO production is essential for the maintenance of RBC deformability, which is known to improve oxygen supply to the working tissue. Electrostimulation of the whole body (WB-EMS) has been shown to improve maximal strength, springiness, and jumping power of trained and untrained athletes. To examine whether these 2 parameters are associated, this study, for the first time, aimed to investigate the effects of an 18-week dynamic WB-EMS program on RBC deformability in addition to maximal strength performance (1 repetition maximum [1RM]) in elite soccer players. Fifteen test persons were assigned in either WB-EMS group (EG, n = 10) or training group (TG, n = 5). Next to their weekly training sessions, EG performed 3 × 10 squat jumps under the influence of WB-EMS twice per week between weeks 1 and 14 and once per week between weeks 14 and 18. Training group only performed 3 × 10 squat jumps. Performance was assessed by a maximal strength test on the leg press machine (1RM). Subjects were tested at baseline and after weeks 7, 14, and 18 with blood sampling before (Pre), 15-30 minutes after (Post), and 24 hours after (24-hour Post) the training. The results showed that maximal strength was significantly improved in EG (p < 0.01). Maximum RBC deformability (EImax) increased on EMS stimulus in EG while it remained unaffected in the TG. Acute increase in EImax at baseline was explained by an increase in RBC-NOS activation while chronic increase of deformability must be caused by different, yet unknown, mechanisms. EImax decreased between weeks 14 and 18 suggesting that 1 WB-EMS session per week is not sufficient to alter deformability (EImax). In contrast, the deformability at low shear stress (EI 3 Pa), comparable with conditions found in the microcirculation, significantly increased in EG until week 14, whereas in TG deformability only, increased until week 7 due to increasing training volume after the winter break. The results indicate that WB-EMS represents a useful and time-saving addition to conventional training sessions to improve RBC deformability and possibly oxygen supply to the working tissue and thus promoting general force components in high performance sport.


Subject(s)
Electric Stimulation Therapy , Erythrocyte Deformability/physiology , Adult , Athletes , Erythrocytes/metabolism , Humans , Male , Microcirculation/physiology , Muscle Strength/physiology , Nitric Oxide Synthase/metabolism , Soccer , Young Adult
20.
Sports Med Open ; 1(1): 14, 2015.
Article in English | MEDLINE | ID: mdl-26258006

ABSTRACT

BACKGROUND: In this study, we examine the biomechanical advantage of combining localized vibrations to hamstring muscles involved in a traditional resistance training routine. METHODS: Thirty-six male and female participants with at least 2 years of experience in resistance training were recruited from the German Sport University Cologne. The participants were randomized into two training groups: vibration training group (VG) and traditional training group (TTG). Both groups underwent a 4-week training phase, where each participant worked out at 70 % of the individual 1 repeat maximum (RM-maximum load capacity of a muscle for one lift to fatigue) (4 sets with 12 repetitions each). For participants in the VG group, local vibration was additionally applied directly to hamstring muscles during exercise. A 2-week examination phase preceded the pretests. After the pretests, the subjects underwent a prescribed training for 4 weeks. At the conclusion of the training, a 2-week detraining was imposed and then the study concluded with posttests and retest. RESULTS: The measured parameters were maximum isometric force of the hamstrings and maximum range of motion and muscle tension at maximum knee angle. The study revealed a significant increase in maximum isometric force in both training groups (VG = 21 %, TTG = 14 %). However, VG groups showed an increase in their range of motion by approximately 2 %. Moreover, the muscle tension at maximum knee angle increased less in VG (approximately 35 %) compared to TG (approximately 46 %). CONCLUSIONS: We conclude that segment-body vibrations applied in resistance training can offer an effective tool to increase maximum isometric force, compared to traditional training. The cause for these findings can be attributed to the additional local vibration stimulus.

SELECTION OF CITATIONS
SEARCH DETAIL
...