Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(18): e2308809, 2024 May.
Article in English | MEDLINE | ID: mdl-38450888

ABSTRACT

Conventional venipuncture is invasive and challenging in low and middle-income countries. Conversely, point-of-care devices paired with fingersticks, although less invasive, suffer from high variability and low blood volume collection. Recently approved microsampling devices address some of these issues but remain cost-prohibitive for resource-limited settings. In this work, a cost-effective microsampling device is described for the collection of liquid blood with minimal invasiveness and sufficient volume retrieval for laboratory analyses or immediate point-of-care testing. Inspired by the anatomy of sanguivorous leeches, the single-use device features a storage compartment for blood collection and a microneedle patch hidden within a suction cup. Finite Element Method simulations, corroborated by mechanical analyses, guide the material selection for device fabrication and design optimization. In piglets, the device successfully collects ≈195 µL of blood with minimal invasiveness. Additionally, a tailor-made lid and adapter enable safe fluid transportation and integration with commercially available point-of-care systems for on-site analyses, respectively. Taken together, the proposed platform holds significant promise for enhancing healthcare in the pediatric population by improving patient compliance and reducing the risk of needlestick injuries through concealed microneedles. Most importantly, given its cost-effective fabrication, the open-source microsampling device may have a meaningful impact in resource-limited healthcare settings.


Subject(s)
Blood Specimen Collection , Cost-Benefit Analysis , Equipment Design , Animals , Swine , Equipment Design/methods , Blood Specimen Collection/instrumentation , Blood Specimen Collection/methods , Blood Specimen Collection/economics , Point-of-Care Systems , Humans , Models, Animal
2.
Sci Transl Med ; 15(715): eabq1887, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37756378

ABSTRACT

Biopharmaceuticals, including proteins and peptides, have revolutionized the treatment of a wide range of diseases, from diabetes and cardiovascular disorders to virus infections and cancer. Despite their efficacy, most of these macromolecular drugs require parenteral administration because of their high molecular weight and relative instability. Over the past 40 years, only a few oral peptide drugs have entered clinical trials, even when formulated with substantial amounts of permeation enhancers. To overcome the epithelial barrier, devices that inject drugs directly into the gastrointestinal mucosa have been proposed recently. However, the robustness and safety of those complex systems are yet to be assessed. In this study, we introduced an innovative technology to boost drug absorption by synergistically combining noninvasive stretching of the buccal mucosa with permeation enhancers. Inspired by the unique structural features of octopus suckers, a self-applicable suction patch was engineered, enabling strong adhesion to and effective mechanical deformation of the mucosal tissue. In dogs, this suction patch achieved bioavailability up to two orders of magnitude higher than those of the commercial tablet formulation of desmopressin, a peptide drug known for its poor oral absorption. Moreover, systemic exposure comparable to that of the approved oral semaglutide tablet was achieved without further optimization. Last, a first-in-human study involving 40 healthy participants confirmed the dosage form's acceptability, thereby supporting the clinical translatability of this simple yet effective platform technology.


Subject(s)
Drug Delivery Systems , Peptides , Humans , Animals , Dogs , Administration, Buccal , Peptides/metabolism , Mouth Mucosa/metabolism , Absorption, Physiological , Tablets/metabolism , Administration, Oral
3.
J Hazard Mater ; 399: 123052, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32937713

ABSTRACT

Formaldehyde is a carcinogenic indoor air pollutant emitted from wood-based furniture, building materials, paints and textiles. Yet, no low-cost sensor exists for on-site monitoring to fulfill stringent current and upcoming (e.g., 8 parts-per-billion by volume, ppb, in France by 2023) exposure guidelines. Here, we present an inexpensive and handheld formaldehyde detector with proven performance in real indoor air. Selectivity is achieved by a compact packed bed column of nanoporous polymer sorbent that separates formaldehyde from interferants present in ambient air. Downstream, a highly sensitive nanoparticle-based chemoresistive Pd-doped SnO2 sensor detects formaldehyde in the relevant concentration range down to 5 ppb within 2 min. As a proof-of-concept, we measured formaldehyde in indoor air and from different wood product emissions, in excellent agreement (R2 > 0.98) with high-resolution proton-transfer-reaction time-of-flight mass spectrometry. This detector is simple-in-use and readily applicable for on-site formaldehyde exposure monitoring at home or work. It is promising for internet-of-things (IOT) sensing networks or even wearables for personal exposure assessment.

4.
Nanomaterials (Basel) ; 10(6)2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32560051

ABSTRACT

Nitrogen dioxide (NO2) is a major air pollutant resulting in respiratory problems, from wheezing, coughing, to even asthma. Low-cost sensors based on WO3 nanoparticles are promising due to their distinct selectivity to detect NO2 at the ppb level. Here, we revealed that controlling the thickness of highly porous (97%) WO3 films between 0.5 and 12.3 µm altered the NO2 sensitivity by more than an order of magnitude. Therefore, films of WO3 nanoparticles (20 nm in diameter by N2 adsorption) with mixed γ- and ε-phase were deposited by single-step flame spray pyrolysis without affecting crystal size, phase composition, and film porosity. That way, sensitivity and selectivity effects were associated unambiguously to thickness, which was not possible yet with other sensor fabrication methods. At the optimum thickness (3.1 µm) and 125 °C, NO2 concentrations were detected down to 3 ppb at 50% relative humidity (RH), and outstanding NO2 selectivity to CO, methanol, ethanol, NH3 (all > 105), H2, CH4, acetone (all > 104), formaldehyde (>103), and H2S (835) was achieved. Such thickness-optimized and porous WO3 films have strong potential for integration into low-power devices for distributed NO2 air quality monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...