Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Oncol ; 17(1): 73, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35413924

ABSTRACT

BACKGROUND: Radiotherapy (RT) is part of the curative treatment of approximately 70% of breast cancer (BC) patients. Wide practice variation has been reported in RT dose, fractionation and its treatment planning for BC. To decrease this practice variation, it is essential to first gain insight into the current variation in RT treatment between institutes. This paper describes the development of the NABON Breast Cancer Audit-Radiotherapy (NBCA-R), a structural nationwide registry of BC RT data of all BC patients treated with at least surgery and RT. METHODS: A working group consisting of representatives of the BC Platform of the Dutch Radiotherapy Society selected a set of dose volume parameters deemed to be surrogate outcome parameters, both for tumour control and toxicity. Two pilot studies were carried out in six RT institutes. In the first pilot study, data were manually entered into a secured web-based system. In the second pilot study, an automatic Digital Imaging and Communications in Medicine (DICOM) RT upload module was created and tested. RESULTS: The NBCA-R dataset was created by selecting RT parameters describing given dose, target volumes, coverage and homogeneity, and dose to organs at risk (OAR). Entering the data was made mandatory for all Dutch RT departments. In the first pilot study (N = 1093), quite some variation was already detected. Application of partial breast irradiation varied from 0 to 17% between the 6 institutes and boost to the tumour bed from 26.5 to 70.2%. For patients treated to the left breast or chest wall only, the average mean heart dose (MHD) varied from 0.80 to 1.82 Gy; for patients treated to the breast/chest wall only, the average mean lung dose (MLD) varied from 2.06 to 3.3 Gy. In the second pilot study 6 departments implemented the DICOM-RT upload module in daily practice. Anonymised data will be available for researchers via a FAIR (Findable, Accessible, Interoperable, Reusable) framework. CONCLUSIONS: We have developed a set of RT parameters and implemented registration for all Dutch BC patients. With the use of an automated upload module registration burden will be minimized. Based on the data in the NBCA-R analyses of the practice variation will be done, with the ultimate aim to improve quality of BC RT. Trial registration Retrospectively registered.


Subject(s)
Breast Neoplasms , Breast Neoplasms/radiotherapy , Female , Humans , Netherlands , Organs at Risk/radiation effects , Pilot Projects , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
2.
Anesthesiology ; 132(3): 424-439, 2020 03.
Article in English | MEDLINE | ID: mdl-31743149

ABSTRACT

BACKGROUND: Vital signs are usually recorded once every 8 h in patients at the hospital ward. Early signs of deterioration may therefore be missed. Wireless sensors have been developed that may capture patient deterioration earlier. The objective of this study was to determine whether two wearable patch sensors (SensiumVitals [Sensium Healthcare Ltd., United Kingdom] and HealthPatch [VitalConnect, USA]), a bed-based system (EarlySense [EarlySense Ltd., Israel]), and a patient-worn monitor (Masimo Radius-7 [Masimo Corporation, USA]) can reliably measure heart rate (HR) and respiratory rate (RR) continuously in patients recovering from major surgery. METHODS: In an observational method comparison study, HR and RR of high-risk surgical patients admitted to a step-down unit were simultaneously recorded with the devices under test and compared with an intensive care unit-grade monitoring system (XPREZZON [Spacelabs Healthcare, USA]) until transition to the ward. Outcome measures were 95% limits of agreement and bias. Clarke Error Grid analysis was performed to assess the ability to assist with correct treatment decisions. In addition, data loss and duration of data gaps were analyzed. RESULTS: Twenty-five high-risk surgical patients were included. More than 700 h of data were available for analysis. For HR, bias and limits of agreement were 1.0 (-6.3, 8.4), 1.3 (-0.5, 3.3), -1.4 (-5.1, 2.3), and -0.4 (-4.0, 3.1) for SensiumVitals, HealthPatch, EarlySense, and Masimo, respectively. For RR, these values were -0.8 (-7.4, 5.6), 0.4 (-3.9, 4.7), and 0.2 (-4.7, 4.4) respectively. HealthPatch overestimated RR, with a bias of 4.4 (limits: -4.4 to 13.3) breaths/minute. Data loss from wireless transmission varied from 13% (83 of 633 h) to 34% (122 of 360 h) for RR and 6% (47 of 727 h) to 27% (182 of 664 h) for HR. CONCLUSIONS: All sensors were highly accurate for HR. For RR, the EarlySense, SensiumVitals sensor, and Masimo Radius-7 were reasonably accurate for RR. The accuracy for RR of the HealthPatch sensor was outside acceptable limits. Trend monitoring with wearable sensors could be valuable to timely detect patient deterioration.


Subject(s)
Monitoring, Intraoperative/instrumentation , Vital Signs , Wearable Electronic Devices , Aged , Critical Care , Female , Heart Rate , Humans , Male , Middle Aged , Monitoring, Intraoperative/methods , Monitoring, Physiologic , Oximetry/instrumentation , Oximetry/methods , Reproducibility of Results , Respiratory Rate , Treatment Outcome , Wireless Technology
3.
Injury ; 51 Suppl 2: S97-S105, 2020 May.
Article in English | MEDLINE | ID: mdl-31761422

ABSTRACT

BACKGROUND: Adverse events are common in high-risk surgical patients, but early detection is difficult. Recent innovations have resulted in wireless and 'wearable' sensors, which may capture patient deterioration at an early stage, but little is known regarding their ability to timely detect events. The objective of this study is to describe the ability of currently available wireless sensors to detect adverse events in high-risk patients. METHODS: A descriptive analysis was performed of all vital signs trend data obtained during an observational comparison study of wearable sensors for vital signs monitoring in high-risk surgical patients during the initial days of recovery at a surgical step-down unit (SDU) and subsequent traumatology or surgical oncology ward. Heart rate (HR), respiratory rate (RR) and oxygen saturation (SpO2) were continuously recorded. Vital sign trend patterns of patients that developed adverse events were described and compared to vital sign recordings of patients without occurrence of adverse events. Two wearable patch sensors were used (SensiumVitals and HealthPatch), a bed-based mattress sensor (EarlySense) and a patient-worn monitor (Masimo Radius-7). RESULTS: Twenty adverse events occurred in 11 of the 31 patients included. Atrial fibrillation (AF) was most common (20%). The onset of AF was recognizable as a sudden increase in HR in all recordings, and all patients with new-onset AF after esophagectomy developed other postoperative complications. Patients who developed respiratory insufficiency showed an increase in RR and a decrease in SpO2, but an increase in HR was not always visible. In patients without adverse events, temporary periods of high HR and RR are observed as well, but these were transient and less frequent. CONCLUSIONS: Current systems for remote wireless patient monitoring on the ward are capable of detecting abnormalities in vital sign patterns in patients who develop adverse events. Remote patient monitoring may have potential to improve patient safety by generating early warnings for deterioration to nursing staff.


Subject(s)
Monitoring, Physiologic/instrumentation , Surgical Procedures, Operative/adverse effects , Vital Signs , Wearable Electronic Devices , Wireless Technology , Adult , Aged , Aged, 80 and over , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/etiology , Female , Heart Rate , Humans , Male , Middle Aged , Patient Safety , Postoperative Complications/diagnosis , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/etiology , Respiratory Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...