Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Atmos Chem Phys ; 23(8): 4637-4661, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-38361764

ABSTRACT

Recently, volatile chemical products (VCPs) have been increasingly recognized as important precursors for secondary organic aerosol (SOA) and ozone in urban areas. However, their atmospheric chemistry, physical transformation, and their impact on climate, environment and human health remain poorly understood. Here, the yields and chemical composition at the molecular level of gas and particle phase products originating from the photooxidation of one of these VCPs, benzyl alcohol (BnOH), is reported. The SOA was generated in the presence of seed aerosol from nebulized ammonium sulfate solution in a 14.5 m3 smog chamber operated in flow mode. More than 50 organic compounds containing nitrogen and/or up to seven oxygen atoms were identified by mass spectrometry. While a detailed non-targeted analysis has been made, our primary focus has been to examine highly oxygenated and nitro-aromatic compounds. The major components include ring-opening products with high oxygen to carbon ratio (e.g., malic acid, tartaric acids, arabic acid, trihydroxy-oxo-pentanoic acids, and pentaric acid), and ring-retaining products (e.g., benzaldehyde, benzoic acid, catechol, 3-nitrobenzyl alcohol, 4-nitrocatechol, 2-hydroxy-5-nitrobenzyl alcohol, 2-nitrophloroglucinol, 3,4-dihydroxy-5-nitrobenzyl alcohol). The presence of some of these products in the gas and particle phases simultaneously provides evidence of their gas/particle partitioning. These oxygenated oxidation products made dominant contributions to the SOA particle composition in both low and high NOx systems. Yields, organic mass to organic carbon ratio, and proposed reaction schemes for selected compounds are provided. The aerosol yield was 5.2% for BnOH/H2O2 at SOA concentration of 52.9 µg m-3 and ranged between 1.7-8.1 % for BnOH/NOx at SOA concentration of 40.0-119.5 µg m-3.

2.
Environ Pollut ; 301: 119010, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35217136

ABSTRACT

Nitrophenols (NPs) are hazardous pollutants found in various environmental matrices, including ambient fine particulate matter (PM2.5), agricultural residues, rainwater, wildfires, and industrial wastes. This study showed for the first time the effect of three pure nitrophenols and their mixture on human lung cells to provide basic understanding of the NP influence on cell elements and processes. We identified NPs in ambient PM2.5 and secondary organic aerosol (SOA) particles generated from the photooxidation of monocyclic aromatic hydrocarbons in the U.S. EPA smog chamber. We assessed the toxicity of identified NPs and their equimolar mixture in normal bronchial epithelial (BEAS-2B) and alveolar epithelial cancer (A549) lung cell lines. The inhibitory concentration-50 (IC50) values were highest and lowest in BEAS-2B cells treated with 2-nitrophenol (2NP) and 4-nitrophenol (4NP), respectively, at 24 h of exposure. The lactate dehydrogenase (LDH) assay showed that 4NP, the most abundant NP we identified in PM2.5, was the most cytotoxic NP examined in both cell lines. The annexin-V/fluorescein isothiocyanate (FITC) analysis showed that the populations of late apoptotic/necrotic BEAS-2B and A549 cells exposed to 3NP, 4NP, and NP equimolar mixture increased between 24 and 48 h. Cellular reactive oxygen species (ROS) buildup led to cellular death post exposure to 3NP, 4NP and the NP mixtures, while 2NP induced the lowest ROS buildup. An increased mitochondrial ROS signal following NP exposure occurred only in BEAS-2B cells. The tetramethylrhodamine, methyl ester, perchlorate (TMRM) assay showed that exposed cells exhibited collapse of the mitochondrial membrane potential. TMRM signals decreased significantly only in BEAS-2B cells, and most strongly with 4NP exposures. Our results suggest that acute atmospheric exposures to NPs may be toxic at high concentrations, but not at ambient PM2.5 concentrations. Further chronic studies with NP and NP-containing PM2.5 are warranted to assess their contribution to lung pathologies.


Subject(s)
Air Pollutants , Epithelial Cells , Air Pollutants/analysis , Humans , Lung , Nitrophenols/metabolism , Oxidative Stress , Particulate Matter/analysis
3.
J Phys Chem A ; 126(1): 88-100, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34979075

ABSTRACT

Recent ambient atmospheric measurements have detected highly oxygenated organic molecules (HOMs) at many sites and are a consequence of autoxidation processes occurring at ambient temperatures. Monoterpenes in particular have a propensity to autoxidize although they exhibit a wide range of HOM yields, which may be due to a variety of reasons including reactions with different oxidants like OH and O3, differing hydrogen (H) atom transfer or peroxy radical cyclization rates, numbers of available reaction pathways, and/or energy loss processes for activated HO-monoterpene or O3-monoterpene adducts. In this work, the autoxidation mechanisms of (+)-α-pinene, (+)-ß-pinene, and (+)-limonene following initial OH oxidation and three successive O2 additions are examined using density functional theory (DFT) to understand what accounts for the disparity. Rates of different potential autoxidation pathways initiated by OH addition or abstraction reactions are quantified using transition-state theory (TST) and master equation approaches using the lowest-energy conformers. OH abstraction reactions do not appreciably influence HOM production in the pinenes and limit autoxidation for limonene because the subsequent autoxidation reactions are slow while OH addition reactions are found to be the main route to HOMs for all three monoterpenes. Generally, faster autoxidation rates are computed in later unimolecular reactions that produce RO7 radicals after OH addition (∼10 s-1 or greater) than rates for RO5 peroxy radical production (0.2-7 s-1). Mechanistic pathways that form RO7 peroxy radicals are similar for all three monoterpenes with a particular bicyclo RO7 radical involving a five-membered peroxide ring being favored for all three monoterpenes. The molar yields of RO7 radicals are 4.6% (+10.0/-2.4), 3.8% (+9.1/-2.6), and 7.6% (+13.1/-4.9) for α-pinene, ß-pinene, and limonene, respectively, at 298 K and 1 ppb of NO and only significantly decline at NO concentrations exceeding 10 ppb. The higher yield for limonene relative to the pinenes is predominantly a consequence of the initial oxidation step: OH adducts of the bicyclic pinenes have to use the excess energy after OH addition to break one of the rings and make the molecule more flexible for autoxidation although this process is inefficient, while one of the prominent OH adducts for monocyclic limonene does not have to do this and may add O2 immediately before autoxidizing further. These insights may be used to guide a better representation of these processes in atmospheric models because they affect particulate matter (PM), NOx, and ozone concentrations via enhanced production of low-volatility species, less early-generation NOx cycling, and altered organic nitrate production.


Subject(s)
Air Pollutants , Aerosols , Air Pollutants/analysis , Bicyclic Monoterpenes , Limonene
4.
Sci Total Environ ; 775: 145592, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34380608

ABSTRACT

Recently, we identified seven novel hydroxy-carboxylic acids resulting from gas-phase reactions of isoprene in the presence of nitrogen oxides (NOx), ozone (O3), and/or hydroxyl radicals (OH). In the present study, we provide evidence that hydroxy-carboxylic acids, namely methyltartaric acids (MTA) are: (1) reliable isoprene tracers, (2) likely produced via rapid peroxy radical hydrogen atom (H) shift reactions (autoxidation mechanism) and analogous alkoxy radical H shifts in low and high NOx environments respectively and (3) representative of aged ambient aerosol in the low NOx regime. Firstly, MTA are reliable tracers of isoprene aerosol because they have been identified in numerous chamber experiments involving isoprene conducted under a wide range of conditions and are absent in the oxidation of mono- and sesquiterpenes. They are also present in numerous samples of ambient aerosol collected during the past 20 years at several locations in the U.S. and Europe. Furthermore, MTA concentrations measured during a year-long field study in Research Triangle Park (RTP), NC in 2003 show a seasonal trend consistent with isoprene emissions and photochemical activity. Secondly, an analysis of chemical ionization mass spectrometer (CIMS) data of several chamber experiments in low and high NOx environments show that highly oxidized molecules (HOMs) derived from isoprene that lead to MTAs may be produced rapidly and considered as early generation isoprene oxidation products in the gas phase. Density functional theory calculations show that rapid intramolecular H shifts involving peroxy and alkoxy radicals possess low barriers for methyl-hydroxy-butenals (MHBs) that may represent precursors for MTA. From these results, a viable rapid H shift mechanism is proposed to occur that produces isoprene derived HOMs like MTA. Finally, an analysis of the mechanism shows that autoxidation-like pathways in low and high NOx may produce HOMs in a few OH oxidation steps like commonly detected methyl tetrol (MT) isoprene tracers. The ratio of MTA/MT in isoprene aerosol is also shown to be significantly greater in field versus chamber samples indicating the importance of such pathways in the atmosphere even for smaller hydrocarbons like isoprene.


Subject(s)
Laboratories , Aerosols , Alcohols , Butadienes , Hemiterpenes , Isomerism
5.
Atmos Environ (1994) ; 259: 1-118538, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34385886

ABSTRACT

This paper uses a machine learning model called a relevance vector machine (RVM) to quantify ozone (O3) and nitrogen oxides (NOx) formation under wintertime conditions. Field study measurements were based on previous work described by Olson et al. (2019), where continuous measurements were reported from a wintertime field study in Utah. RVMs were formulated using either O3 or nitrogen dioxide (NO2) as the output variable. Values of the correlation coefficient (r2) between predicted and measured concentrations were 0.944 for O3 and 0.931 for NO2. RVMs are constructed from the observed measurements and result in sparse model formulations, meaning that only a subset of the data is used to approximate the entire dataset. For this study, the RVM with O3 as the output variable used only 20% of the measurement data while the RVM with NO2 used 16%. RVMs were then used as a predictive model to assess the importance of individual precursors. Using O3 as the output variable, increases in three species resulted in increased O3 concentrations: hydrogen peroxide (H2O2), dinitrogen pentoxide (N2O5), and molecular chlorine (Cl2). For the two termination products measured during the study, nitric acid (HNO3) and formic acid (CH2O2), no change in O3 concentration was observed. Using NO2 as the output variable, only increases in N2O5 resulted in increased NO2 concentrations.

6.
Atmos Environ (1994) ; 2522021 May 01.
Article in English | MEDLINE | ID: mdl-33897265

ABSTRACT

This research used data mining approaches to better understand factors affecting the formation of secondary organic aerosol (SOA). Although numerous laboratory and computational studies have been completed on SOA formation, it is still challenging to determine factors that most influence SOA formation. Experimental data were based on previous work described by Offenberg et al. (2017), where volume concentrations of SOA were measured in 139 laboratory experiments involving the oxidation of single hydrocarbons under different operating conditions. Three different data mining methods were used, including nearest neighbor, decision tree, and pattern mining. Both decision tree and pattern mining approaches identified similar chemical and experimental conditions that were important to SOA formation. Among these important factors included the number of methyl groups for the SOA precursor, the number of rings for the SOA precursor, and the presence of dinitrogen pentoxide (N2O5).

7.
Atmos Environ (1994) ; 244(1)2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33364911

ABSTRACT

A series of chamber experiments was conducted to investigate the composition of secondary organic aerosol (SOA) following oxidation of a range of parent n-alkanes (C10-C17) in the presence of NO x . The relative contribution of selected species representing first, second, and higher generation products to SOA mass was measured using a high-resolution aerosol mass spectrometer. Gas chromatography was also used for a limited set of amenable species. Relative contributions varied substantially across the range of investigated alkanes reflecting slight changes in SOA composition. The contribution of first-generation cyclic hemiacetal is minimal toward the small end of the investigated range and gradually increase with n-alkane size. The relative contribution of second generation and higher nitrate-containing species, in contrast, decrease with an increased alkane size. A similar trend is observed for relative contribution of organonitrates to SOA. Finally, SOA yield and composition are sensitive to water vapor concentrations. This sensitivity is limited to a narrow range (dry to ~15% RH) with little, if any, impact above 15% suggesting that this impact may be negligible under ambient conditions. The impact of water vapor also appears to decrease with increasing alkane carbon number.

8.
Environ Sci Technol ; 53(24): 14516-14527, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31757124

ABSTRACT

Highly oxygenated molecules (HOMs) are a class of compounds associated with secondary organic aerosols exhibiting high oxygen to carbon (O:C) ratios and often originating from the oxidation of biogenic compounds. Here, the photooxidation and ozonolysis of isoprene were examined under a range of conditions to identify HOM tracers for aged isoprene aerosol. The HOM tracers were identified as silylated derivatives by gas chromatography-mass spectrometry and by detecting their parent compounds by liquid chromatography-high resolution mass spectrometry. In addition to the previously observed methyltetrols and 2-methylglyceric acid, seven tracer compounds were identified, including 2-methyltartronic acid (MTtA), 2-methylerythronic acid (2MeTrA), 3-methylerythronic acid (3MeTrA), 2-methylthreonic acid (2MTrA), 3-methylthreonic acid (3MTrA), erythro-methyltartaric acid (e-MTA), and threo-methyltartaric acid (t-MTA). The molecular structures were confirmed with authentic standards synthesized in the laboratory. The presence of some of these HOMs in the gas and particle phases simultaneously provides evidence of their gas/particle partitioning. To determine the contributions of aged isoprene products to ambient aerosols, we analyzed ambient PM2.5 samples collected in the southeastern United States in summer 2003 and at two European monitoring stations located in Zielonka and Godów (Poland). Our findings show that methyltartaric acids (MTA) and 2- and 3-methylthreonic acids (and their stereoisomers) are representative of aged isoprene aerosol because they occur both in the laboratory chamber aerosol obtained and in ambient PM2.5. On the basis of gas chromatography-mass spectrometry (GC-MS) analysis, their concentrations were found to range from 0.04 ng for 3-methylthreonic acid to 6.3 ng m-3 for methyltartaric acid at the southeast site in Duke Forest, NC, USA.


Subject(s)
Air Pollutants , Hemiterpenes , Aerosols , Butadienes , Hydroxy Acids , Pentanes , Southeastern United States
9.
Atmos Environ (1994) ; 218: 1-116988, 2019.
Article in English | MEDLINE | ID: mdl-31666799

ABSTRACT

Concentrations of 11 species are reported from continuous measurements taken during a wintertime field study in Utah. Time series data for measured species generally displayed strong diurnal patterns. Six species show a diurnal pattern of daytime maximums (NO, NOy, O3, H2O2, CH2O2, and Cl2), while five species show a diurnal pattern of night time maximums (NO2, HONO, ClNO2, HNO3, and N2O5). Vector autoregression analyses were completed to better understand important species influencing the formation of O3 and NOx. For the species studied, r2 values of predicted versus measured concentrations ranged from 0.82-0.99. Fitting parameters for the autoregressive matrix, Π, indicated the importance of species precursors. In addition, values of fitting parameters for Π were relatively insensitive to data size, with variations generally <10%. Variable causation was quantified using the Granger causation method. Assuming O3 and NOx behave as chemical products, reactants (in order of importance) are as follows: H2O2, N2O5, HONO, and ClNO2.

10.
Environ Pollut ; 244: 38-46, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30321710

ABSTRACT

Light-absorbing organic carbon (OC), also referred to as "brown carbon" (BrC), has been intensively investigated in atmospheres impacted by biomass burning. However, other BrC sources (e.g., secondary formation in the atmosphere) are rarely studied in ambient aerosols. In the current work, forty-five PM2.5 filter samples were collected in Research Triangle Park (RTP), NC, USA from June 1st to July 15th, 2013. The bulk carbonaceous components, including OC, elemental carbon (EC), water soluble OC (WSOC), and an array of organic molecular markers were measured; an ultraviolet/visible spectrometer was used to measure the light absorption of methanol extractable OC and WSOC. The average light absorption per OC and WSOC mass of PM2.5 samples in summer RTP are 0.36 ±â€¯0.16 m2 gC-1 and 0.29 ±â€¯0.13 m2 gC-1, respectively, lower than the ambient aerosol samples impacted by biomass burning and/or fossil fuel combustion (0.7-1.6 m2 gC-1) from other places. Less than 1% of the aqueous extracts absorption is attributed to the light-absorbing chromophores (nitroaromatic compounds) identified in this work. To identify the major sources of BrC absorption in RTP in the summer, Positive Matrix Factorization (PMF) was applied to a dataset containing optical properties and chemical compositions of carbonaceous components in PM2.5. The results suggest that the formation of biogenic secondary organic aerosol (SOA) containing organosulfates is an important BrC source, contributing up to half of the BrC absorption in RTP during the summertime.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Carbon/analysis , Light , Organic Chemicals/analysis , Particulate Matter/analysis , Seasons , Aerosols/analysis , Atmosphere , Biomass , Environmental Monitoring/methods , Fires , Fossil Fuels , Methanol , North Carolina , Particle Size , Southeastern United States , Sulfuric Acid Esters/analysis , Water/chemistry
11.
J Phys Chem A ; 123(4): 906-919, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30589543

ABSTRACT

A computational protocol is employed to glean new insight into the kinetics of several 1,5-hydrogen atom (H) shift reactions subsequent to first- and second-generation OH/O2 additions to isoprene. The M06-2X density functional was initially used with the Nudged Elastic Band (NEB) method to determine the potential energy surface of OH/O2 addition reactions, the 1,5-H shift reactions, and the fragmentation exit channels. The Master Equation Solver for Multi-Energy Well Reactions (MESMER) was applied to determine the rate constants for OH addition and the 1,5-H shifts. M06-2X was capable of quantifying the rate constants of OH addition to the first and second double bonds of isoprene with deviations less than 17% from the experimentally determined values. However, M06-2X underestimated the 1,5-H shift rate constants of second-generation isoprene peroxy radicals. Consequently, MN15, ωB97X-D, and CBS-QB3 methods were employed to compute average barrier heights to first- and second-generation 1,5-H shifts. In the first generation, the rate constants of H abstraction by ß-(1,2) and (4,3) isoprene hydroxy-peroxy radicals from the neighboring hydroxyl group are 1.1 × 10-3 and 2.4 × 10-3 s-1, respectively. These values are determined primarily by the barrier of the H shift reaction and, to a smaller albeit nonnegligible extent, by the stability of the resulting alkoxy radical and the exit barrier leading to C-C bond dissociation. In contrast, the average second-generation rate constant of 1,5-H shifts from H-R-OH sites to the peroxy radical is 1.8 × 10-1 s-1, with tunneling playing the significant role of increasing this value relative to first-generation 1,5-H shifts. Under low NO x conditions, first-generation isoprene oxidation reactions may recycle HO x at levels ranging from 10 to 30% due in large part to 1,5-H shifts, with the recycling efficiency being sensitive to HO2 concentrations and temperature. HO x recycling is expected to increase to levels beyond 80% in second-generation reactions of oxidized isoprene species because of isoprene epoxydiol (IEPOX) formation and further 1,5-H shifts that are kinetically favorable.

12.
Atmos Environ (1994) ; 178: 164-172, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29725240

ABSTRACT

Although many volatile organic compounds (VOCs) are regulated to limit air pollution and the consequent health effects, the photooxidation products generally are not. Thus, we examined the mutagenicity in Salmonella TA100 of photochemical atmospheres generated in a steady-state atmospheric simulation chamber by irradiating mixtures of single aromatic VOCs, NOx, and ammonium sulfate seed aerosol in air. The 10 VOCs examined were benzene; toluene; ethylbenzene; o-, m-, and p-xylene; 1,2,4- and 1,3,5-trimethylbenzene; m-cresol; and naphthalene. Salmonella were exposed at the air-agar interface to the generated atmospheres for 1, 2, 4, 8, or 16 h. Dark-control exposures produced non-mutagenic atmospheres, illustrating that the gas-phase precursor VOCs were not mutagenic at the concentrations tested. Under irradiation, all but m-cresol and naphthalene produced mutagenic atmospheres, with potencies ranging from 2.0 (p-xylene) to 10.4 (ethylbenzene) revertants m3 mgC-1 h-1. The mutagenicity was due exclusively to direct-acting late-generation products of the photooxidation reactions. Gas-phase chemical analysis showed that a number of oxidized organic chemical species enhanced during the irradiated exposure experiments correlated (r ≥ 0.81) with the mutagenic potencies of the atmospheres. Molecular formulas assigned to these species indicated that they likely contained peroxy acid, aldehyde, alcohol, and other functionalities.

13.
J Mass Spectrom ; 53(8): 680-692, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29766603

ABSTRACT

The analytical capabilities associated with the use of silylation reactions have been extended to a new class of organic molecules, nitroaromatic compounds (NACs). These compounds are a possible contributor to urban particulate matter of secondary origin which would make them important analytes due to their (1) detrimental health effects, (2) potential to affect aerosol optical properties, and (3) and usefulness for identifying PM2.5 from biomass burning. The technique is based on derivatization of the parent NACs by using N,O-bis-(trimethylsilyl)-trifluoro acetamide, one of the most prevalent derivatization reagent for analyzing hydroxylated molecules, followed by gas chromatography-mass spectrometry using electron ionization (EI) and methane chemical ionization (CI). This method is evaluated for 32 NACs including nitrophenols, methyl-/methoxy-nitrophenols, nitrobenzoic acids, and nitrobenzyl alcohols. Electron ionization spectra were characterized by a high abundance of ions corresponding to [M+ ] or [M+  - 15]. Chemical ionization spectra exhibited high abundance for [M+  + 1], [M+  - 15], and [M+  + 29] ions. Both EI and CI spectra exhibit ions specific to nitro group(s) for [M+  - 31], [M+  - 45], and [M+  - 60]. The strong abundance observed for [M+ ] (EI), [M+  - 15] (EI/CI), or [M+  + 1] (CI) ions is consistent with the high charge stabilizing ability associated with aromatic compounds. The combination of EI and CI ionization offers strong capabilities for detection and identification of NACs. Spectra associated with NACs, containing hydrogen, carbon, oxygen, and nitrogen atoms only, as silylated derivatives show fragment/adduct ions at either (a) odd or (b) even masses that indicate either (a) odd or (b) even number of nitro groups, respectively. Mass spectra associated with silylated NACs exhibited 3 distinct regions where characteristic fragmentation with a specific pattern associated with (1) ─OH and/or ─COOH groups, (2) ─NO2 group(s), and (3) benzene ring(s). These findings were confirmed with applications to chamber aerosol and ambient PM2.5 .

14.
Proc Natl Acad Sci U S A ; 115(9): 2038-2043, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29440409

ABSTRACT

The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic-biogenic interaction affecting ambient aerosol in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing.


Subject(s)
Aerosols/chemistry , Air Pollutants/chemistry , Monoterpenes/chemistry , Seasons , Southeastern United States , Time Factors
15.
Environ Sci Technol ; 52(5): 3045-3053, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29406743

ABSTRACT

No study has evaluated the mutagenicity of atmospheres with a calculated air quality health index (AQHI). Thus, we generated in a UV-light-containing reaction chamber two simulated atmospheres (SAs) with similar AQHIs but different proportions of criteria pollutants and evaluated them for mutagenicity in three Salmonella strains at the air-agar interface. We continuously injected into the chamber gasoline, nitric oxide, and ammonium sulfate, as well as either α-pinene to produce SA-PM, which had a high concentration of particulate matter (PM): 119 ppb ozone (O3), 321 ppb NO2, and 1007 µg/m3 PM2.5; or isoprene to produce SA-O3, which had a high ozone (O3) concentration: 415 ppb O3, 633 ppb NO2, and 55 µg/m3 PM2.5. Neither PM2.5 extracts, NO2, or O3 alone, nor nonphoto-oxidized mixtures were mutagenic or cytotoxic. Both photo-oxidized atmospheres were largely direct-acting base-substitution mutagens with similar mutagenic potencies in TA100 and TA104. The mutagenic potencies [(revertants/h)/(mgC/m3)] of SA-PM (4.3 ± 0.4) and SA-O3 (9.5 ± 1.3) in TA100 were significantly different ( P < 0.0001), but the mutation spectra were not ( P = 0.16), being ∼54% C → T and ∼46% C → A. Thus, the AQHI may have some predictive value for the mutagenicity of the gas phase of air.


Subject(s)
Air Pollutants , Air Pollution , Atmosphere , Mutagenicity Tests , Mutagens , Particulate Matter
16.
Environ Sci Technol ; 52(5): 3037-3044, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29381868

ABSTRACT

The production of photochemical atmospheres under controlled conditions in an irradiation chamber permits the manipulation of parameters that influence the resulting air-pollutant chemistry and potential biological effects. To date, no studies have examined how contrasting atmospheres with a similar Air Quality Health Index (AQHI), but with differing ratios of criteria air pollutants, might differentially affect health end points. Here, we produced two atmospheres with similar AQHIs based on the final concentrations of ozone, nitrogen dioxide, and particulate matter (PM2.5). One simulated atmosphere (SA-PM) generated from irradiation of ∼23 ppmC gasoline, 5 ppmC α-pinene, 529 ppb NO, and 3 µg m-3 (NH4)2SO4 as a seed resulted in an average of 976 µg m-3 PM2.5, 326 ppb NO2, and 141 ppb O3 (AQHI 97.7). The other atmosphere (SA-O3) generated from 8 ppmC gasoline, 5 ppmC isoprene, 874 ppb NO, and 2 µg m-3 (NH4)2SO4 resulted in an average of 55 µg m-3 PM2.5, 643 ppb NO2, and 430 ppb O3 (AQHI of 99.8). Chemical speciation by gas chromatography showed that photo-oxidation degraded the organic precursors and promoted the de novo formation of secondary reaction products such as formaldehyde and acrolein. Further work in accompanying papers describe toxicological outcomes from the two distinct photochemical atmospheres.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Nitrogen Dioxide , Particulate Matter
17.
Aerosol Sci Technol ; 52(9): 992-1004, 2018.
Article in English | MEDLINE | ID: mdl-31686721

ABSTRACT

The relationship between the oxidation state and relative volatility of secondary organic aerosol (SOA) from the oxidation of a wide range of hydrocarbons is investigated using a fast-stepping, scanning thermodenuder interfaced with a high-resolution time-of-flight aerosol mass spectrometer (AMS). SOA oxidation state varied widely across the investigated range of parent hydrocarbons but was relatively stable for replicate experiments using a single hydrocarbon precursor. On average, unit mass resolution indicators of SOA oxidation (e.g., AMS f 43 and f 44) are consistent with previously reported values. Linear regression of H:C vs. O:C obtained from parameterization of f 43 and f 44 and elemental analysis of high-resolution spectra in Van Krevelen space both yield a slope of ~-0.5 across different SOA types. A similar slope was obtained for a distinct subset of toluene/NO x reactions in which the integrated oxidant exposure was varied to alter oxidation. The relative volatility of different SOA types displays similar variability and is strongly correlated with SOA oxidation state ( OS - ). On average, relatively low oxidation and volatility were observed for aliphatic alkene (including terpenes) and n-alkane SOA while the opposite is true for mono- and polycyclic aromatic hydrocarbon SOA. Effective enthalpy for total chamber aerosol obtained from volatility differential mobility analysis is also highly correlated with OS - c indicating a primary role for oxidation levels in determining the volatility of chamber SOA. Effective enthalpies for chamber SOA are substantially lower than those of neat organic standards but are on the order of those obtained for partially oligomerized glyoxal and methyl glyoxal.

18.
Atmos Chem Phys ; 18(24): 18101-18121, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-32158471

ABSTRACT

The effect of acidity and relative humidity on bulk isoprene aerosol parameters has been investigated in several studies; however, few measurements have been conducted on individual aerosol compounds. The focus of this study has been the examination of the effect of acidity and relative humidity on secondary organic aerosol (SOA) chemical composition from isoprene photooxidation in the presence of nitrogen oxide (NO x ). A detailed characterization of SOA at the molecular level was also investigated. Experiments were conducted in a 14.5 m3 smog chamber operated in flow mode. Based on a detailed analysis of mass spectra obtained from gas chromatography-mass spectrometry of silylated derivatives in electron impact and chemical ionization modes, ultra-high performance liquid chromatography/electrospray ionization/time-of-flight high-resolution mass spectrometry, and collision-induced dissociation in the negative ionization modes, we characterized not only typical isoprene products but also new oxygenated compounds. A series of nitroxy-organosulfates (NOSs) were tentatively identified on the basis of high-resolution mass spectra. Under acidic conditions, the major identified compounds include 2-methyltetrols (2MT), 2-methylglyceric acid (2mGA), and 2MT-OS. Other products identified include epoxydiols, mono- and dicarboxylic acids, other organic sulfates, and nitroxy- and nitrosoxy-OS. The contribution of SOA products from isoprene oxidation to PM2.5 was investigated by analyzing ambient aerosol collected at rural sites in Poland. Methyltetrols, 2mGA, and several organosulfates and nitroxy-OS were detected in both the field and laboratory samples. The influence of relative humidity on SOA formation was modest in non-acidic-seed experiments and stronger under acidic seed aerosol. Total secondary organic carbon decreased with increasing relative humidity under both acidic and non-acidic conditions. While the yields of some of the specific organic compounds decreased with increasing relative humidity, others varied in an indeterminate manner from changes in the relative humidity.

19.
Environ Sci Technol ; 51(20): 11607-11616, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-28930472

ABSTRACT

Secondary organic aerosol (SOA) can affect the atmospheric radiation balance through absorbing light at shorter visible and UV wavelengths. However, the composition and optical properties of light-absorbing SOA is poorly understood. In this work, SOA filter samples were collected during individual chamber experiments conducted with three biogenic and eight aromatic volatile organic compound (VOC) precursors in the presence of NOX and H2O2. Compared with the SOA generated using the aromatic precursors, biogenic SOA generally exhibits negligible light absorption above 350 nm; the aromatic SOA generated in the presence of NOX shows stronger light absorption than that generated with H2O2. Fifteen nitroaromatic compound (NAC) chemical formulas were identified and quantified in SOA samples. Their contributions to the light absorption of sample extracts were also estimated. On average, the m-cresol/NOX SOA sample has the highest mass contribution from NACs (10.4 ± 6.74%, w/w), followed by naphthalene/NOX (6.41 ± 2.08%) and benzene/NOX (5.81 ± 3.82%) SOA. The average contributions of NACs to total light absorption were at least two times greater than their average mass contributions at 365 and 400 nm, revealing the potential use of chromophoric NACs as brown carbon (BrC) tracers in source apportionment and air quality modeling studies.


Subject(s)
Aerosols , Hydrogen Peroxide , Carbon , Molecular Weight
20.
Environ Sci Technol ; 51(17): 9911-9919, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28796509

ABSTRACT

Volume concentrations of secondary organic aerosol (SOA) are measured in 139 steady-state, single precursor hydrocarbon oxidation experiments after passing through a temperature controlled inlet. The response to change in temperature is well predicted through a feedforward Artificial Neural Network. The most parsimonious model, as indicated by Akaike's Information Criterion, Corrected (AIC,C), utilizes 11 input variables, a single hidden layer of 4 tanh activation function nodes, and a single linear output function. This model predicts thermal behavior of single precursor aerosols to less than ±5%, which is within the measurement uncertainty, while limiting the problem of overfitting. Prediction of thermal behavior of SOA can be achieved by a concise number of descriptors of the precursor hydrocarbon including the number of internal and external double bonds, number of methyl- and ethyl- functional groups, molecular weight, and number of ring structures, in addition to the volume of SOA formed, and an indicator of which of four oxidant precursors was used to initiate reactions (NOx photo-oxidation, photolysis of H2O2, ozonolysis, or thermal decomposition of N2O5). Additional input variables, such as chamber volumetric residence time, relative humidity, initial concentration of oxides of nitrogen, reacted hydrocarbon concentration, and further descriptors of the precursor hydrocarbon, including carbon number, number of oxygen atoms, and number of aromatic ring structures, lead to over fit models, and are unnecessary for an efficient, accurate predictive model of thermal behavior of SOA. This work indicates that predictive statistical modeling methods may be complementary to descriptive techniques for use in parametrization of air quality models.


Subject(s)
Aerosols , Hydrogen Peroxide , Oxygen , Air Pollutants , Carbon , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...