Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Heliyon ; 10(7): e27864, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560251

ABSTRACT

Terrestrial ecosystems such as coniferous forests in Central Europe are experiencing changes in health status following extreme droughts compounding with severe heat waves. The increasing temporal resolution and spatial coverage of earth observation data offer new opportunities to assess these dynamics. Dense time-series of optical satellite data allow for computing Dynamic Habitat Indices (DHIs), which have been predominantly used in biodiversity studies. However, DHIs cover three aspects of vegetation changes that could be affected by drought: annual productivity, minimum cover, and seasonality. Here, we evaluate the health status of coniferous forests in the federal state of Hesse in Germany over the period 2017-2020 including the severe drought year of 2018 using DHIs based on the Normalized Difference Vegetation Index (NDVI) for drought assessment. To identify the most important variables affecting coniferous forest die-off, a series of environmental variables together with the three DHIs components were used in a logistic regression (LR) model. Each DHI component changed significantly across non-damaged and damaged sites in all years (p-value 0.05). When comparing 2017 to 2019, DHI-based annual productivity decreased and seasonality increased. Most importantly, none of the DHI components had reached pre-drought conditions, which likely indicates a change in ecosystem functioning. We also identified spatially explicit areas highly affected by drought. The LR model revealed that in addition to common environmental parameters related to temperature, precipitation, and elevation, DHI components were the most important factors explaining the health status. Our analysis demonstrates the potential of DHIs to capture the effect of drought events on Central European coniferous forest ecosystems. Since the spaceborne data are available at the global level, this approach can be applied to track the dynamics of ecosystem conditions in other regions, at larger spatial scales, and for other Land Use/Land Cover types.

2.
Nat Commun ; 15(1): 1251, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341437

ABSTRACT

Organismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a 'slow-fast' axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that 'slow' and 'fast' strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.


Subject(s)
Biodiversity , Ecosystem , Biomass , Agriculture , Soil
3.
Ecol Lett ; 27(1): e14361, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38217282

ABSTRACT

Biodiversity typically increases multiple ecosystem functions simultaneously (multifunctionality) but variation in the strength and direction of biodiversity effects between studies suggests context dependency. To determine how different factors modulate the diversity effect on multifunctionality, we established a large grassland experiment manipulating plant species richness, resource addition, functional composition (exploitative vs. conservative species), functional diversity and enemy abundance. We measured ten above- and belowground functions and calculated ecosystem multifunctionality. Species richness and functional diversity both increased multifunctionality, but their effects were context dependent. Richness increased multifunctionality when communities were assembled with fast-growing species. This was because slow species were more redundant in their functional effects, whereas different fast species promoted different functions. Functional diversity also increased multifunctionality but this effect was dampened by nitrogen enrichment and enemy presence. Our study suggests that a shift towards fast-growing communities will not only alter ecosystem functioning but also the strength of biodiversity-functioning relationships.


Subject(s)
Ecosystem , Nitrogen , Biodiversity , Plants , Grassland
4.
Nat Ecol Evol ; 7(2): 236-249, 2023 02.
Article in English | MEDLINE | ID: mdl-36376602

ABSTRACT

The impact of local biodiversity loss on ecosystem functioning is well established, but the role of larger-scale biodiversity dynamics in the delivery of ecosystem services remains poorly understood. Here we address this gap using a comprehensive dataset describing the supply of 16 cultural, regulating and provisioning ecosystem services in 150 European agricultural grassland plots, and detailed multi-scale data on land use and plant diversity. After controlling for land-use and abiotic factors, we show that both plot-level and surrounding plant diversity play an important role in the supply of cultural and aboveground regulating ecosystem services. In contrast, provisioning and belowground regulating ecosystem services are more strongly driven by field-level management and abiotic factors. Structural equation models revealed that surrounding plant diversity promotes ecosystem services both directly, probably by fostering the spill-over of ecosystem service providers from surrounding areas, and indirectly, by maintaining plot-level diversity. By influencing the ecosystem services that local stakeholders prioritized, biodiversity at different scales was also shown to positively influence a wide range of stakeholder groups. These results provide a comprehensive picture of which ecosystem services rely most strongly on biodiversity, and the respective scales of biodiversity that drive these services. This key information is required for the upscaling of biodiversity-ecosystem service relationships, and the informed management of biodiversity within agricultural landscapes.


Subject(s)
Biodiversity , Ecosystem , Agriculture/methods , Plants
5.
New Phytol ; 236(5): 1936-1950, 2022 12.
Article in English | MEDLINE | ID: mdl-36128644

ABSTRACT

Plant-soil feedbacks (PSFs) underlying grassland plant richness and productivity are typically coupled with nutrient availability; however, we lack understanding of how restoration measures to increase plant diversity might affect PSFs. We examined the roles of sward disturbance, seed addition and land-use intensity (LUI) on PSFs. We conducted a disturbance and seed addition experiment in 10 grasslands along a LUI gradient and characterized plant biomass and richness, soil microbial biomass, community composition and enzyme activities. Greater plant biomass at high LUI was related to a decrease in the fungal to bacterial ratios, indicating highly productive grasslands to be dominated by bacteria. Lower enzyme activity per microbial biomass at high plant species richness indicated a slower carbon (C) cycling. The relative abundance of fungal saprotrophs decreased, while pathogens increased with LUI and disturbance. Both fungal guilds were negatively associated with plant richness, indicating the mechanisms underlying PSFs depended on LUI. We show that LUI and disturbance affect fungal functional composition, which may feedback on plant species richness by impeding the establishment of pathogen-sensitive species. Therefore, we highlight the need to integrate LUI including its effects on PSFs when planning for practices that aim to optimize plant diversity and productivity.


Subject(s)
Biodiversity , Grassland , Plants , Biomass , Soil , Bacteria , Ecosystem
6.
Sci Total Environ ; 836: 155748, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35526633

ABSTRACT

Grassland ecosystems provide important ecosystem services such as nutrient cycling and primary production that are affected by land-use intensity. To assess the effects of land-use intensity, operational and sensitive ecological indicators that integrate effects of grassland management on ecosystem processes such as organic matter turnover are needed. Here, we investigated the suitability of measuring the mass loss of standardized tea litter together with extracellular enzyme kinetics as a proxy of litter decomposition in the topsoil of grasslands along a well-defined land-use intensity gradient (fertilization, mowing, grazing) in Central Germany. Tea bags containing either green tea (high-quality litter) or rooibos tea (low-quality litter) were buried in 5 cm soil depth. Litter mass loss was measured after three (early-stage decomposition) and 12 months (mid-stage decomposition). Based on the fluorescence measurement of the reaction product 4-methylumbelliferone, Michaelis-Menten enzyme kinetics (Vmax: potential maximum rate of activity; Km: substrate affinity) of five hydrolases involved in the carbon (C)-, nitrogen (N)- and phosphorus (P)-cycle (ß-glucosidase (BG), cellobiohydrolase (CBH), cellotriohydrolase (CTH), 1,4-ß-N-acetylglucosaminidase (NAG), and phosphatase (PH)) were determined in tea litter bags and in the surrounding soil. The land-use intensity index (LUI), summarizing fertilization, mowing, grazing, and in particular the frequency of mowing were identified as important drivers of early-stage tea litter decomposition. Mid-stage decomposition was influenced by grazing intensity. The higher the potential activity of all measured C-, N- and P-targeting enzymes, the higher was the decomposition of both tea litters in the early-phase. During mid-stage decomposition, individual enzyme parameters (Vmax of CTH and PH, Km of CBH) became more important. The tea bag method proved to be a suitable indicator which allows an easy and cost-effective assessment of land-use intensity effects on decay processes in manged grasslands. In combination with enzyme kinetics it is an appealing approach to identify mechanisms driving litter break down.


Subject(s)
Ecosystem , Grassland , Kinetics , Nitrogen/analysis , Plant Leaves/chemistry , Soil , Tea
7.
Front Microbiol ; 13: 715637, 2022.
Article in English | MEDLINE | ID: mdl-35185839

ABSTRACT

Acidobacteria occur in a large variety of ecosystems worldwide and are particularly abundant and highly diverse in soils. In spite of their diversity, only few species have been characterized to date which makes Acidobacteria one of the most poorly understood phyla among the domain Bacteria. We used a culture-independent niche modeling approach to elucidate ecological adaptations and their evolution for 4,154 operational taxonomic units (OTUs) of Acidobacteria across 150 different, comprehensively characterized grassland soils in Germany. Using the relative abundances of their 16S rRNA gene transcripts, the responses of active OTUs along gradients of 41 environmental variables were modeled using hierarchical logistic regression (HOF), which allowed to determine values for optimum activity for each variable (niche optima). By linking 16S rRNA transcripts to the phylogeny of full 16S rRNA gene sequences, we could trace the evolution of the different ecological adaptations during the diversification of Acidobacteria. This approach revealed a pronounced ecological diversification even among acidobacterial sister clades. Although the evolution of habitat adaptation was mainly cladogenic, it was disrupted by recurrent events of convergent evolution that resulted in frequent habitat switching within individual clades. Our findings indicate that the high diversity of soil acidobacterial communities is largely sustained by differential habitat adaptation even at the level of closely related species. A comparison of niche optima of individual OTUs with the phenotypic properties of their cultivated representatives showed that our niche modeling approach (1) correctly predicts those physiological properties that have been determined for cultivated species of Acidobacteria but (2) also provides ample information on ecological adaptations that cannot be inferred from standard taxonomic descriptions of bacterial isolates. These novel information on specific adaptations of not-yet-cultivated Acidobacteria can therefore guide future cultivation trials and likely will increase their cultivation success.

8.
Sci Total Environ ; 810: 151293, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34756900

ABSTRACT

Peatlands are long-term sinks of carbon (C) and nitrogen (N) that are exposed to anthropogenic pressure. This has often induced a vegetation shift from peat mosses towards increasing presence of vascular plants. However, the impact of this vegetation shift on the sink function of peatlands remains unclear. To address this research gap, we studied C and N accumulation in a Patagonian cushion bog where a shift to the predominance of vascular cushion plants is a natural phenomenon since millennia. For comparison, long-term accumulation and decomposition patterns in a pristine Patagonian Sphagnum bog were studied. Thereto, we determined recent and long-term rates of C and N accumulation, their within-site variability, and studied plant-macrofossils. These results were related to decomposition indicators (C/N ratio, humification index, stable isotopes) of the bog types. Despite differences in decomposition indicators, long-term rates of C accumulation were of similar magnitude in the Sphagnum (21.9 g C m-2 yr-1) and in the cushion bog (22.2 g C m-2 yr-1). N accumulation was significantly lower in the Sphagnum bog (0.35 g N m-2 yr-1) compared to the surprisingly high accumulation in the cushion bog (0.55 g N m-2 yr-1). Tephra depositions in the cushion bog about 1600 cal. Years ago presumably triggered the vegetation shift towards dominance of cushion plants by a fertilization effect. C accumulation rates during past decades in the upper decimeters of peat were four times higher in the cushion bog (245 g C m-2 yr-1) compared to the Sphagnum bog (64 g C m-2 yr-1), but substantially decreased since the appearance of cushion plants. High decomposition rates as indicated by decomposition indicators thus apparently offset the higher productivity of cushion plants in the long term. While cushion bogs appear to be effective N sinks, their C sink function may therefore be equal to Sphagnum bogs.


Subject(s)
Sphagnopsida , Wetlands , Anthropogenic Effects , Carbon , Nitrogen , Soil
9.
Nat Commun ; 12(1): 4431, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290234

ABSTRACT

Experiments showed that biodiversity increases grassland productivity and nutrient exploitation, potentially reducing fertiliser needs. Enhancing biodiversity could improve P-use efficiency of grasslands, which is beneficial given that rock-derived P fertilisers are expected to become scarce in the future. Here, we show in a biodiversity experiment that more diverse plant communities were able to exploit P resources more completely than less diverse ones. In the agricultural grasslands that we studied, management effects either overruled or modified the driving role of plant diversity observed in the biodiversity experiment. Nevertheless, we show that greater above- (plants) and belowground (mycorrhizal fungi) biodiversity contributed to tightening the P cycle in agricultural grasslands, as reduced management intensity and the associated increased biodiversity fostered the exploitation of P resources. Our results demonstrate that promoting a high above- and belowground biodiversity has ecological (biodiversity protection) and economical (fertiliser savings) benefits. Such win-win situations for farmers and biodiversity are crucial to convince farmers of the benefits of biodiversity and thus counteract global biodiversity loss.


Subject(s)
Agriculture/methods , Biodiversity , Grassland , Phosphorus/metabolism , Agriculture/economics , Biomass , Fertilizers/economics , Latent Class Analysis , Mycorrhizae/classification , Mycorrhizae/metabolism , Phosphorus/analysis , Phosphorus/economics , Plants/classification , Plants/metabolism , Plants/microbiology , Soil/chemistry , Soil Microbiology
10.
Nat Commun ; 12(1): 3918, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168127

ABSTRACT

Land-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.


Subject(s)
Biodiversity , Ecosystem , Plants , Soil Microbiology , Agriculture , Animals , Europe , Food Chain , Forests , Grassland , Herbivory , Insecta
11.
Sci Adv ; 7(20)2021 05.
Article in English | MEDLINE | ID: mdl-33990326

ABSTRACT

Land-use intensification poses major threats to biodiversity, such as to insect herbivore communities. The stability of these communities depends on interactions linking herbivores and host plants. How interaction network structure begets robustness, and thus stability, in different ecosystems and how network structure and robustness are altered along land-use intensity gradients are unclear. We analyzed plant-herbivore networks based on literature-derived interactions and long-term sampling from 289 grasslands and forests in three regions of Germany. Network size and nestedness were the most important determinants of network robustness in both ecosystems. Along land-use intensity gradients, networks in moderately grazed grasslands were more robust than in those managed by frequent mowing or fertilization. In forests, changes of network robustness along land-use intensity gradients relied on changes in plant species richness. Our results expand our knowledge of the stability of plant-herbivore networks and indicate options for management aimed at stabilizing herbivore communities.

12.
Proc Natl Acad Sci U S A ; 117(45): 28140-28149, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33093203

ABSTRACT

Land-use intensification can increase provisioning ecosystem services, such as food and timber production, but it also drives changes in ecosystem functioning and biodiversity loss, which may ultimately compromise human wellbeing. To understand how changes in land-use intensity affect the relationships between biodiversity, ecosystem functions, and services, we built networks from correlations between the species richness of 16 trophic groups, 10 ecosystem functions, and 15 ecosystem services. We evaluated how the properties of these networks varied across land-use intensity gradients for 150 forests and 150 grasslands. Land-use intensity significantly affected network structure in both habitats. Changes in connectance were larger in forests, while changes in modularity and evenness were more evident in grasslands. Our results show that increasing land-use intensity leads to more homogeneous networks with less integration within modules in both habitats, driven by the belowground compartment in grasslands, while forest responses to land management were more complex. Land-use intensity strongly altered hub identity and module composition in both habitats, showing that the positive correlations of provisioning services with biodiversity and ecosystem functions found at low land-use intensity levels, decline at higher intensity levels. Our approach provides a comprehensive view of the relationships between multiple components of biodiversity, ecosystem functions, and ecosystem services and how they respond to land use. This can be used to identify overall changes in the ecosystem, to derive mechanistic hypotheses, and it can be readily applied to further global change drivers.


Subject(s)
Biodiversity , Conservation of Natural Resources , Ecosystem , Models, Biological , Forests , Grassland
13.
Nat Ecol Evol ; 4(11): 1485-1494, 2020 11.
Article in English | MEDLINE | ID: mdl-32839545

ABSTRACT

A large body of research shows that biodiversity loss can reduce ecosystem functioning. However, much of the evidence for this relationship is drawn from biodiversity-ecosystem functioning experiments in which biodiversity loss is simulated by randomly assembling communities of varying species diversity, and ecosystem functions are measured. This random assembly has led some ecologists to question the relevance of biodiversity experiments to real-world ecosystems, where community assembly or disassembly may be non-random and influenced by external drivers, such as climate, soil conditions or land use. Here, we compare data from real-world grassland plant communities with data from two of the largest and longest-running grassland biodiversity experiments (the Jena Experiment in Germany and BioDIV in the United States) in terms of their taxonomic, functional and phylogenetic diversity and functional-trait composition. We found that plant communities of biodiversity experiments cover almost all of the multivariate variation of the real-world communities, while also containing community types that are not currently observed in the real world. Moreover, they have greater variance in their compositional features than their real-world counterparts. We then re-analysed a subset of experimental data that included only ecologically realistic communities (that is, those comparable to real-world communities). For 10 out of 12 biodiversity-ecosystem functioning relationships, biodiversity effects did not differ significantly between the full dataset of biodiversity experiments and the ecologically realistic subset of experimental communities. Although we do not provide direct evidence for strong or consistent biodiversity-ecosystem functioning relationships in real-world communities, our results demonstrate that the results of biodiversity experiments are largely insensitive to the exclusion of unrealistic communities and that the conclusions drawn from biodiversity experiments are generally robust.


Subject(s)
Biodiversity , Ecosystem , Germany , Phylogeny , Plants
14.
Sci Total Environ ; 726: 137877, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32481225

ABSTRACT

Both climate change and agricultural intensification are drivers of global nutrient cycles and biodiversity loss. A potentially great environmental threat can arise when these two drivers interact, for example, when farmers try to compensate reduced soil nutrient availability due to drought by the application of liquid organic fertiliser. As dry soils don't hold back nutrients very well, this approach can lead to nitrate leaching and potentially also to the pollution of drinking water. However, little is known about leaching from dry but fertilised grassland soil, and how this is affected by land use intensity and plant diversity. In this mesocosm study, we transferred 60 grassland sods differing in past land use intensity to a greenhouse and treated them with severe drought, fertilisation and both together. Drought was induced by almost entirely stopping irrigation for seven weeks. Fertilisation was done by three applications of slurry summing up to 168 kg total nitrogen per hectare (111 kg NH4-N). We assessed nutrient leaching risk with ion-exchange resin (IER) bags installed in the soil of all mesocosms. IER bags were retrieved after drought and extracts were analysed for concentrations of nitrate, ammonium, phosphate and potassium. Fertilisation partially buffered drought-induced losses in yield. However, the interaction of fertilisation and drought resulted in a drastic increase in nitrate leaching risk when soils are rewetted (>300%), while neither drought nor fertilisation alone were significant. Ammonium concentrations followed the same trend as nitrate, but less pronounced. Phosphate and potassium concentrations were not affected by the treatments. Past land use was hardly related to soil nutrient concentrations, rather was plant diversity. However, results indicate that plant diversity was not driving nitrate and ammonium concentrations under drought and/or fertilisation. This study reveals grassland fertilisation during drought to be a severe environmental problem due to significantly increased nitrate leaching risk.

15.
Biodivers Data J ; 7: e36387, 2019.
Article in English | MEDLINE | ID: mdl-31598068

ABSTRACT

BACKGROUND: The 150 grassland plots were located in three study regions in Germany, 50 in each region. The dataset describes the yearly grassland management for each grassland plot using 116 variables.General information includes plot identifier, study region and survey year. Additionally, grassland plot characteristics describe the presence and starting year of drainage and whether arable farming had taken place 25 years before our assessment, i.e. between 1981 and 2006. In each year, the size of the management unit is given which, in some cases, changed slightly across years.Mowing, grazing and fertilisation were systematically surveyed: Mowing is characterised by mowing frequency (i.e. number of cuts per year), dates of cutting and different technical variables, such as type of machine used or usage of conditioner.For grazing , the livestock species and age (e.g. cattle, horse, sheep), the number of animals, stocking density per hectare and total duration of grazing were recorded. As a derived variable, the mean grazing intensity was then calculated by multiplying the livestock units with the duration of grazing per hectare [LSU days/ha]. Different grazing periods during a year, partly involving different herds, were summed up to an annual grazing intensity for each grassland.For fertilisation , information on the type and amount of different types of fertilisers was recorded separately for mineral and organic fertilisers, such as solid farmland manure, slurry and mash from a bioethanol factory. Our fertilisation measures neglect dung dropped by livestock during grazing. For each type of fertiliser, we calculated its total nitrogen content, derived from chemical analyses by the producer or agricultural guidelines (Table 3).All three management types, mowing, fertilisation and grazing, were used to calculate a combined land use intensity index (LUI) which is frequently used to define a measure for the land use intensity. Here, fertilisation is expressed as total nitrogen per hectare [kg N/ha], but does not consider potassium and phosphorus.Information on additional management practices in grasslands was also recorded including levelling, to tear-up matted grass covers, rolling, to remove surface irregularities, seed addition, to close gaps in the sward. NEW INFORMATION: Investigating the relationship between human land use and biodiversity is important to understand if and how humans affect it through the way they manage the land and to develop sustainable land use strategies. Quantifying land use (the 'X' in such graphs) can be difficult as humans manage land using a multitude of actions, all of which may affect biodiversity, yet most studies use rather simple measures of land use, for example, by creating land use categories such as conventional vs. organic agriculture. Here, we provide detailed data on grassland management to allow for detailed analyses and the development of land use theory. The raw data have already been used for > 100 papers on the effect of management on biodiversity (e.g. Manning et al. 2015).

16.
Glob Chang Biol ; 24(7): 2828-2840, 2018 07.
Article in English | MEDLINE | ID: mdl-29526033

ABSTRACT

The intensification of land use constitutes one of the main drivers of global change and alters nutrient fluxes on all spatial scales, causing landscape-level eutrophication and contamination of natural resources. Changes in soil nutrient concentrations are thus indicative for crucial environmental issues associated with intensive land use. We measured concentrations of NO3 -N, NH4 -N, P, K, Mg, and Ca using 1,326 ion-exchange resin bags buried in 20 cm depth beneath the main root zone in 150 temperate grasslands. Nutrient concentrations were related to land use intensity, that is, fertilization, mowing, grazing intensities, and plant diversity by structural equation modeling. Furthermore, we assessed the response of soil nutrients to mechanical sward disturbance and subsequent reseeding, a common practice for grassland renewal. Land use intensity, especially fertilization, significantly increased the concentrations of NO3 -N, NH4 -N, K, P, and also Mg. Besides fertilization (and tightly correlated mowing) intensity, grazing strongly increased NO3 -N and K concentrations. Plant species richness decreased P and NO3 -N concentrations in soil when grassland productivity of the actual year was statistically taken into account, but not when long-term averages of productivity were used. Thus, we assume that, in the actual study year, a distinct drought period might have caused the observed decoupling of productivity from fertilization and soil nutrients. Breaking up the grassland sward drastically increased NO3 -N concentrations (+146%) but reduced NH4 -N, P, and K concentrations, unbalancing soil nutrient stoichiometry and boosting the risk of N leaching. Reseeding the sward after disturbance did not have a short-term effect on nutrient concentrations. We conclude that renewal of permanent grassland should be avoided as far as possible and future grassland management has to strongly rise the effectiveness of fertilization. Additionally, grassland management might have to increasingly taking care of periods of drought, in which nutrient additions might not increase plant growth but potentially only facilitate leaching.


Subject(s)
Biodiversity , Grassland , Plants/classification , Droughts , Plant Physiological Phenomena , Soil/chemistry
17.
Ecol Evol ; 8(1): 601-616, 2018 01.
Article in English | MEDLINE | ID: mdl-29321897

ABSTRACT

Plant functional traits reflect individual and community ecological strategies. They allow the detection of directional changes in community dynamics and ecosystemic processes, being an additional tool to assess biodiversity than species richness. Analysis of functional patterns in plant communities provides mechanistic insight into biodiversity alterations due to anthropogenic activity. Although studies have consi-dered of either anthropogenic management or nutrient availability on functional traits in temperate grasslands, studies combining effects of both drivers are scarce. Here, we assessed the impacts of management intensity (fertilization, mowing, grazing), nutrient stoichiometry (C, N, P, K), and vegetation composition on community-weighted means (CWMs) and functional diversity (Rao's Q) from seven plant traits in 150 grasslands in three regions in Germany, using data of 6 years. Land use and nutrient stoichiometry accounted for larger proportions of model variance of CWM and Rao's Q than species richness and productivity. Grazing affected all analyzed trait groups; fertilization and mowing only impacted generative traits. Grazing was clearly associated with nutrient retention strategies, that is, investing in durable structures and production of fewer, less variable seed. Phenological variability was increased. Fertilization and mowing decreased seed number/mass variability, indicating competition-related effects. Impacts of nutrient stoichiometry on trait syndromes varied. Nutrient limitation (large N:P, C:N ratios) promoted species with conservative strategies, that is, investment in durable plant structures rather than fast growth, fewer seed, and delayed flowering onset. In contrast to seed mass, leaf-economics variability was reduced under P shortage. Species diversity was positively associated with the variability of generative traits. Synthesis. Here, land use, nutrient availability, species richness, and plant functional strategies have been shown to interact complexly, driving community composition, and vegetation responses to management intensity. We suggest that deeper understanding of underlying mechanisms shaping community assembly and biodiversity will require analyzing all these parameters.

18.
Glob Chang Biol ; 23(9): 3729-3741, 2017 09.
Article in English | MEDLINE | ID: mdl-28161907

ABSTRACT

The break-up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large-scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub-Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land-use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land-use type had an effect on carbon accumulation in the topsoil (0-5 cm), no independent land-use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha-1  yr-1 (1-20 years old, 0-5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1-10 years old, 1.04 Mg C ha-1  yr-1 ) compared to earlier abandoned crop fields (11-20 years old, 0.26 Mg C ha-1  yr-1 ). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model-based continent-wide SOC prediction.


Subject(s)
Carbon Sequestration , Crops, Agricultural , Soil/chemistry , Agriculture , Carbon , China , Russia , Siberia
19.
Nature ; 536(7617): 456-9, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27533038

ABSTRACT

Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.


Subject(s)
Biodiversity , Food Chain , Animals , Biomass , Germany , Grassland , Herbivory , Insecta , Microbiology , Models, Biological , Plants
20.
Sci Total Environ ; 566-567: 215-222, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27220098

ABSTRACT

Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ(13)C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier (13)C due to closing stomata leading to an enrichment of (13)C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ(13)C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ(13)C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ(13)C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change.


Subject(s)
Agriculture , Biodiversity , Droughts , Fertilizers/analysis , Grassland , Plants , Germany
SELECTION OF CITATIONS
SEARCH DETAIL
...