Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Phys Rev Lett ; 109(1): 013901, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-23031106

ABSTRACT

We examine, both experimentally and theoretically, an interaction of tightly focused polarized light with a slit on a metal surface supporting plasmon-polariton modes. Remarkably, this simple system can be highly sensitive to the polarization of the incident light and offers a perfect quantum weak measurement tool with a built-in postselection in the plasmon-polariton mode. We observe the plasmonic spin Hall effect in both coordinate and momentum spaces which is interpreted as weak measurements of the helicity of light with real and imaginary weak values determined by the input polarization. Our experiment combines the advantages of (i) quantum weak measurements, (ii) near-field plasmonic systems, and (iii) high-numerical aperture microscopy in employing the spin-orbit interaction of light and probing light chirality.

2.
Phys Rev Lett ; 101(4): 043903, 2008 Jul 25.
Article in English | MEDLINE | ID: mdl-18764330

ABSTRACT

Observation of surface-plasmon phenomena that are dependent upon the handedness of the circularly polarized incident light (spin) is presented. The polarization-dependent near-field intensity distribution obtained in our experiment is attributed to the presence of a geometric phase arising from the interaction of light with an anisotropic and inhomogeneous nanoscale structure. A near-field vortex surface mode with a spin-dependent topological charge was obtained in a plasmonic microcavity. The remarkable phenomenon of polarization-sensitive focusing in a plasmonic structure was also demonstrated.

3.
Appl Opt ; 40(10): 1609-16, 2001 Apr 01.
Article in English | MEDLINE | ID: mdl-18357154

ABSTRACT

A novel, to our knowledge, approach to light-stripe triangulation configuration that allows for parallel, fast, real-time three-dimensional surface topography with an extremely large number of optically resolved depth steps is presented, analyzed, and experimentally demonstrated. The method is based on a color-coding and decoding arrangement that exploits polychromatic illumination and axially dispersing optical elements. This leads to an increase of the depth-measuring range without any decrease in the axial or the lateral resolution. Our experiments yield three-dimensional surface measurements with lateral and depth optical resolutions of <40 nm, for a depth of focus of 48 mm, resulting in 1.2 x 10(6) resolving depth steps.

4.
Opt Lett ; 26(1): 33-5, 2001 Jan 01.
Article in English | MEDLINE | ID: mdl-18033498

ABSTRACT

A novel method of performing two-dimensional space-variant polarization operations is presented. The method is based on determining the local direction and period of subwavelength metal-stripe gratings by use of vectorial optics to obtain any desired continuous polarization change. We demonstrate our approach with specific computer-generated space-variant polarization elements for laser radiation at 10.6mum. The polarization properties are verified with complete space-variant polarization analysis and measurement.

5.
Opt Lett ; 26(18): 1424-6, 2001 Sep 15.
Article in English | MEDLINE | ID: mdl-18049626

ABSTRACT

We report the appearance of a geometrical phase in space-variant polarization-state manipulations. This phase is related to the classic Pancharatnam-Berry phase. We show a method with which to calculate it and experimentally demonstrate its effect, using subwavelength metal stripe space-variant gratings. The experiment is based on a unique grating for converting circularly polarized light at a wavelength of 10.6 mum into an azimuthally polarized beam. Our experimental evidence relies on analysis of far-field images of the resultant polarization.

6.
Opt Lett ; 26(21): 1711-3, 2001 Nov 01.
Article in English | MEDLINE | ID: mdl-18049708

ABSTRACT

A novel method for rapid polarization measurement is suggested. The method is based on a periodic space-variant polarizer that can be realized by use of subwavelength metal-stripe gratings. The Stokes parameters of the incident beam are determined by Fourier analysis of the space-variant intensity transmitted through the grating, thus permitting real-time polarization measurement. We discuss the design and realization of such polarizers and demonstrate our technique with polarization measurements of CO(2)-laser radiation at a wavelength of 10.6mum.

SELECTION OF CITATIONS
SEARCH DETAIL
...