Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(1): e0117087, 2015.
Article in English | MEDLINE | ID: mdl-25629699

ABSTRACT

Coral reefs have evolved with a crucial symbiosis between photosynthetic dinoflagellates (genus Symbiodinium) and their cnidarian hosts (Scleractinians). Most coral larvae take up Symbiodinium from their environment; however, the earliest steps in this process have been elusive. Here we demonstrate that the disaccharide trehalose may be an important signal from the symbiont to potential larval hosts. Symbiodinium freshly isolated from Fungia scutaria corals constantly released trehalose (but not sucrose, maltose or glucose) into seawater, and released glycerol only in the presence of coral tissue. Spawning Fungia adults increased symbiont number in their immediate area by excreting pellets of Symbiodinium, and when these naturally discharged Symbiodinium were cultured, they also released trehalose. In Y-maze experiments, coral larvae demonstrated chemoattractant and feeding behaviors only towards a chamber with trehalose or glycerol. Concomitantly, coral larvae and adult tissue, but not symbionts, had significant trehalase enzymatic activities, suggesting the capacity to utilize trehalose. Trehalase activity was developmentally regulated in F. scutaria larvae, rising as the time for symbiont uptake occurs. Consistent with the enzymatic assays, gene finding demonstrated the presence of a trehalase enzyme in the genome of a related coral, Acropora digitifera, and a likely trehalase in the transcriptome of F. scutaria. Taken together, these data suggest that adult F. scutaria seed the reef with Symbiodinium during spawning and the exuded Symbiodinium release trehalose into the environment, which acts as a chemoattractant for F. scutaria larvae and as an initiator of feeding behavior- the first stages toward establishing the coral-Symbiodinium relationship. Because trehalose is a fixed carbon compound, this cue would accurately demonstrate to the cnidarian larvae the photosynthetic ability of the potential symbiont in the ambient environment. To our knowledge, this is the first report of a chemical cue attracting the motile coral larvae to the symbiont.


Subject(s)
Anthozoa/metabolism , Chemotactic Factors/metabolism , Dinoflagellida/metabolism , Symbiosis/physiology , Trehalose/metabolism , Animals , Coral Reefs
2.
Physiol Biochem Zool ; 83(1): 157-66, 2010.
Article in English | MEDLINE | ID: mdl-19938981

ABSTRACT

Coral species throughout the world are facing severe local and global environmental pressures. Because of the pressing conservation need, we are studying the reproduction, physiology, and cryobiology of coral larvae with the future goal of cryopreserving and maintaining these organisms in a genome resource bank. Effective cryopreservation involves several steps, including the loading and unloading of cells with cryoprotectant and the avoidance of osmotic shock. In this study, during the time course of coral larvae development of the mushroom coral Fungia scutaria, we examined several physiologic factors, including internal osmolality, percent osmotically active water, formation of mucus cells, and intracellular organic osmolytes. The osmotically inactive components of the cell, V(b), declined 33% during development from the oocyte to day 5. In contrast, measurements of the internal osmolality of coral larvae indicated that the internal osmolality was increasing from day 1 to day 5, probably as a result of the development of mucus cells that bind ions. Because of this, we conclude that coral larvae are osmoconformers with an internal osmolality of about 1,000 mOsm. Glycine betaine, comprising more than 90% of the organic osmolytes, was found to be the major organic osmolyte in the larvae. Glycerol was found in only small quantities in larvae that had been infected with zooxanthellae, suggesting that this solute did not play a significant role in the osmotic balance of this larval coral. We were interested in changes in cellular characteristics and osmolytes that might suggest solutes to test as cryoprotectants in order to assist in the successful cryopreservation of the larvae. More importantly, these data begin to reveal the basic physiological events that underlie the move from autonomous living to symbiosis.


Subject(s)
Anthozoa/chemistry , Betaine/analysis , Glycerol/analysis , Animals , Anthozoa/growth & development , Conservation of Natural Resources/methods , Female , Hawaii , Histocytochemistry , Larva/physiology , Osmolar Concentration
3.
Cryobiology ; 51(2): 235-9, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16126189

ABSTRACT

MII mouse oocytes in 1 and 1.5M ethylene glycol(EG)/phosphate buffered saline have been subjected to rapid freezing at 50 degrees C/min to -70 degrees C. When this rapid freezing is preceded by a variable hold time of 0-3 min after the initial extracellular ice formation (EIF), the duration of the hold time has a substantial effect on the temperature at which the oocytes subsequently undergo intracellular ice formation (IIF). For example, in 1M EG, the IIF temperatures are -23.7 and -39.2 degrees C with 0 and 2 min hold times; in 1.5M EG, the corresponding IIF temperatures are -29.1 and -40.8 degrees C.


Subject(s)
Cryopreservation/methods , Ice , Oocytes/physiology , Animals , Cell Survival/drug effects , Cell Survival/physiology , Ethylene Glycol/pharmacology , Female , Freezing , Mice , Mice, Inbred ICR , Oocytes/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...