Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 9(4)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236641

ABSTRACT

BACKGROUNDT cell responses are impaired in Staphylococcus aureus-infected children, highlighting a potential mechanism of immune evasion. This study tested the hypotheses that toxin-specific antibodies protect immune cells from bacterial killing and are associated with improved T cell function following infection.METHODSS. aureus-infected and healthy children (N = 33 each) were prospectively enrolled. During acute infection and convalescence, we quantified toxin-specific IgG levels by ELISA, antibody function using a cell killing assay, and functional T cell responses by ELISPOT.RESULTSThere were no differences in toxin-specific IgG levels or ability to neutralize toxin-mediated immune cell killing between healthy and acutely infected children, but antibody levels and function increased following infection. Similarly, T cell function, which was impaired during acute infection, improved following infection. However, the response to infection was highly variable; up to half of children did not have improved antibody or T cell function. Serum from children with higher α-hemolysin-specific IgG levels more strongly protected immune cells against toxin-mediated killing. Importantly, children whose serum more strongly protected against toxin-mediated killing also had stronger immune responses to infection, characterized by more elicited antibodies and greater improvement in T cell function following infection.CONCLUSIONThis study demonstrates that, despite T cell impairment during acute infection, S. aureus elicits toxin-neutralizing antibodies. Individual antibody responses and T cell recovery are variable. These findings also suggest that toxin-neutralizing antibodies protect antigen-presenting cells and T cells, thereby promoting immune recovery. Finally, failure to elicit toxin-neutralizing antibodies may identify children at risk for prolonged T cell suppression.FUNDINGNIH National Institute of Allergy and Infectious Diseases R01AI125489 and Nationwide Children's Hospital.


Subject(s)
Bacterial Toxins , Staphylococcal Infections , Child , Humans , Staphylococcus aureus , T-Lymphocytes , Antibodies, Bacterial , Staphylococcal Infections/microbiology , Antibodies, Neutralizing , Immunoglobulin G
2.
Antimicrob Agents Chemother ; 66(4): e0227021, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35266822

ABSTRACT

Recurrent Staphylococcus aureus infections are common, suggesting a failure to elicit protective immunity. Given the emergence of antibiotic resistance, a vaccine is urgently needed, but there is no approved vaccine for S. aureus. While antibiotics are routinely used to treat S. aureus infections, their impact on the development of protective immunity is not understood. Using an established mouse model of S. aureus skin and soft tissue infection (SSTI), we observed that antibiotic therapy effectively resolved infection but failed to elicit protection against secondary (2°) SSTI. Key contributors to protective immunity, toxin-specific antibodies and interleukin-17A (IL-17A)-producing T cells, were not strongly elicited in antibiotic-treated mice. Delaying antibiotic treatment failed to resolve skin lesions but resulted in higher antibody levels after infection and strong protection against 2° SSTI, suggesting that the development of protective immunity requires a longer period of antigen exposure. We next investigated if combining α-hemolysin (Hla) vaccination with antibiotics during primary infection would both treat infection and generate durable protective immunity. This "therapeutic vaccination" approach resulted in rapid resolution of primary infection and protection against recurrent infection, demonstrating that concurrent vaccination could circumvent the deleterious effects of antibiotic therapy on elicited immune responses. Collectively, these findings suggest that protective immunity is thwarted by the rapid elimination of antigen during antibiotic treatment. However, vaccination in conjunction with antibiotic treatment can retain the benefits of antibiotic treatment while also establishing protective immunity.


Subject(s)
Soft Tissue Infections , Staphylococcal Infections , Animals , Anti-Bacterial Agents/therapeutic use , Hemolysin Proteins , Mice , Soft Tissue Infections/drug therapy , Staphylococcal Infections/prevention & control , Staphylococcus aureus
3.
J Infect Dis ; 225(1): 177-185, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34145461

ABSTRACT

BACKGROUND: Staphylococcus aureus infections are common throughout the lifespan, with recurrent infections occurring in nearly half of infected children. There is no licensed vaccine, underscoring the need to better understand how S. aureus evades protective immunity. Despite much study, the relative contributions of antibodies and T cells to protection against S. aureus infections in humans are not fully understood. METHODS: We prospectively quantified S. aureus-specific antibody levels by ELISA and T-cell responses by ELISpot in S. aureus-infected and healthy children. RESULTS: S. aureus-specific antibody levels and T-cell responses increased with age in healthy children, suggesting a coordinated development of anti-staphylococcal immunity. Antibody levels against leukotoxin E (LukE) and Panton-Valentine leukocidin (LukS-PV), but not α-hemolysin (Hla), were higher in younger infected children, compared with healthy children; these differences disappeared in older children. We observed a striking impairment of global and S. aureus-specific T-cell function in children with invasive and noninvasive infection, suggesting that S. aureus-specific immune responses are dysregulated during childhood infection regardless of the infection phenotype. CONCLUSIONS: These findings identify a potential mechanism by which S. aureus infection actively evades adaptive immune responses, thereby preventing the development of protective immunity and maintaining susceptibility to recurrent infection.


Subject(s)
Antibodies, Bacterial/blood , Exotoxins/immunology , Leukocidins/immunology , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections/epidemiology , Staphylococcal Infections/immunology , Staphylococcus aureus , Adolescent , Bacterial Toxins , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Hemolysin Proteins/immunology , Humans , Infant , Male , Prospective Studies , Seroepidemiologic Studies , T-Lymphocytes , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...