Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 128(4): 040405, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35148159

ABSTRACT

We show how to construct general probabilistic theories that contain an energy observable dependent on position and momentum. The construction is in accordance with classical and quantum theory and allows for physical predictions, such as the probability distribution for position, momentum, and energy. We demonstrate the construction by formulating a toy model for the harmonic oscillator that is neither classical nor quantum. The model features a discrete energy spectrum, a ground state with sharp position and momentum, an eigenstate with a nonpositive Wigner function as well as a state that has tunneling properties. The toy model demonstrates that operational theories can be a viable alternative approach for formulating physical theories.

2.
Phys Rev Lett ; 124(8): 080401, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32167322

ABSTRACT

The existence of ideal quantum measurements is one of the fundamental predictions of quantum mechanics. In theory, an ideal measurement projects a quantum state onto the eigenbasis of the measurement observable, while preserving coherences between eigenstates that have the same eigenvalue. The question arises whether there are processes in nature that correspond to such ideal quantum measurements and how such processes are dynamically implemented in nature. Here we address this question and present experimental results monitoring the dynamics of a naturally occurring measurement process: the coupling of a trapped ion qutrit to the photon environment. By taking tomographic snapshots during the detection process, we show that the process develops in agreement with the model of an ideal quantum measurement with an average fidelity of 94%.

3.
Entropy (Basel) ; 21(8)2019 Aug 07.
Article in English | MEDLINE | ID: mdl-33267484

ABSTRACT

Recently, the concept of daemonic ergotropy has been introduced to quantify the maximum energy that can be obtained from a quantum system through an ancilla-assisted work extraction protocol based on information gain via projective measurements [G. Francica et al., npj Quant. Inf. 3, 12 (2018)]. We prove that quantum correlations are not advantageous over classical correlations if projective measurements are considered. We go beyond the limitations of the original definition to include generalised measurements and provide an example in which this allows for a higher daemonic ergotropy. Moreover, we propose a see-saw algorithm to find a measurement that attains the maximum work extraction. Finally, we provide a multipartite generalisation of daemonic ergotropy that pinpoints the influence of multipartite quantum correlations, and study it for multipartite entangled and classical states.

4.
Phys Rev Lett ; 120(18): 180402, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29775367

ABSTRACT

We present the first experimental confirmation of the quantum-mechanical prediction of stronger-than-binary correlations. These are correlations that cannot be explained under the assumption that the occurrence of a particular outcome of an n≥3-outcome measurement is due to a two-step process in which, in the first step, some classical mechanism precludes n-2 of the outcomes and, in the second step, a binary measurement generates the outcome. Our experiment uses pairs of photonic qutrits distributed between two laboratories, where randomly chosen three-outcome measurements are performed. We report a violation by 9.3 standard deviations of the optimal inequality for nonsignaling binary correlations.

5.
Science ; 360(6387): 416-418, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29700263

ABSTRACT

Modern quantum technologies in the fields of quantum computing, quantum simulation, and quantum metrology require the creation and control of large ensembles of entangled particles. In ultracold ensembles of neutral atoms, nonclassical states have been generated with mutual entanglement among thousands of particles. The entanglement generation relies on the fundamental particle-exchange symmetry in ensembles of identical particles, which lacks the standard notion of entanglement between clearly definable subsystems. Here, we present the generation of entanglement between two spatially separated clouds by splitting an ensemble of ultracold identical particles prepared in a twin Fock state. Because the clouds can be addressed individually, our experiments open a path to exploit the available entangled states of indistinguishable particles for quantum information applications.

6.
Phys Rev Lett ; 117(15): 150401, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27768377

ABSTRACT

We show that, for any n, there are m-outcome quantum correlations, with m>n, which are stronger than any nonsignaling correlation produced from selecting among n-outcome measurements. As a consequence, for any n, there are m-outcome quantum measurements that cannot be constructed by selecting locally from the set of n-outcome measurements. This is a property of the set of measurements in quantum theory that is not mandatory for general probabilistic theories. We also show that this prediction can be tested through high-precision Bell-type experiments and identify past experiments providing evidence that some of these strong correlations exist in nature. Finally, we provide a modified version of quantum theory restricted to having at most n-outcome quantum measurements.

7.
Phys Rev Lett ; 117(26): 260401, 2016 Dec 23.
Article in English | MEDLINE | ID: mdl-28059533

ABSTRACT

Quantum measurements on a two-level system can have more than two independent outcomes, and in this case, the measurement cannot be projective. Measurements of this general type are essential to an operational approach to quantum theory, but so far, the nonprojective character of a measurement can only be verified experimentally by already assuming a specific quantum model of parts of the experimental setup. Here, we overcome this restriction by using a device-independent approach. In an experiment on pairs of polarization-entangled photonic qubits we violate by more than 8 standard deviations a Bell-like correlation inequality that is valid for all sets of two-outcome measurements in any dimension. We combine this with a device-independent verification that the system is best described by two qubits, which therefore constitutes the first device-independent certification of a nonprojective quantum measurement.

8.
Phys Rev Lett ; 114(25): 250402, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26197111

ABSTRACT

We solve the problem of whether a set of quantum tests reveals state-independent contextuality and use this result to identify the simplest set of the minimal dimension. We also show that identifying state-independent contextuality graphs [R. Ramanathan and P. Horodecki, Phys. Rev. Lett. 112, 040404 (2014)] is not sufficient for revealing state-independent contextuality.

9.
Phys Rev Lett ; 114(8): 080403, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25768740

ABSTRACT

Common tools for obtaining physical density matrices in experimental quantum state tomography are shown here to cause systematic errors. For example, using maximum likelihood or least squares optimization to obtain physical estimates for the quantum state, we observe a systematic underestimation of the fidelity and an overestimation of entanglement. Such strongly biased estimates can be avoided using linear evaluation of the data or by linearizing measurement operators yielding reliable and computational simple error bounds.

10.
Phys Rev Lett ; 111(2): 020403, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23889373

ABSTRACT

Sequential measurements on a single particle play an important role in fundamental tests of quantum mechanics. We provide a general method to analyze temporal quantum correlations, which allows us to compute the maximal correlations for sequential measurements in quantum mechanics. As an application, we present the full characterization of temporal correlations in the simplest Leggett-Garg scenario and in the sequential measurement scenario associated with the most fundamental proof of the Kochen-Specker theorem.

11.
Phys Rev Lett ; 110(18): 180401, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683179

ABSTRACT

When experimental errors are ignored in an experiment, the subsequent analysis of its results becomes questionable. We develop tests to detect systematic errors in quantum experiments where only a finite amount of data is recorded and apply these tests to tomographic data taken in an ion trap experiment. We put particular emphasis on quantum state tomography and present three detection methods: the first two employ linear inequalities while the third is based on the generalized likelihood ratio.

12.
Phys Rev Lett ; 110(4): 040403, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-25166141

ABSTRACT

What singles out quantum mechanics as the fundamental theory of nature? Here we study local measurements in generalized probabilistic theories (GPTs) and investigate how observational limitations affect the production of correlations. We find that if only a subset of typical local measurements can be made then all the bipartite correlations produced in a GPT can be simulated to a high degree of accuracy by quantum mechanics. Our result makes use of a generalization of Dvoretzky's theorem for GPTs. The tripartite correlations can go beyond those exhibited by quantum mechanics, however.

13.
Phys Rev Lett ; 109(25): 250402, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23368436

ABSTRACT

Contextuality is a natural generalization of nonlocality which does not need composite systems or spacelike separation and offers a wider spectrum of interesting phenomena. Most notably, in quantum mechanics there exist scenarios where the contextual behavior is independent of the quantum state. We show that the quest for an optimal inequality separating quantum from classical noncontextual correlations in a state-independent manner admits an exact solution, as it can be formulated as a linear program. We introduce the noncontextuality polytope as a generalization of the locality polytope and apply our method to identify two different tight optimal inequalities for the most fundamental quantum scenario with state-independent contextuality.

14.
Phys Rev Lett ; 104(21): 210401, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20867078

ABSTRACT

Entanglement is often verified by a violation of an inequality like a Bell inequality or an entanglement witness. Considerable effort has been devoted to the optimization of such inequalities in order to obtain a high violation. We demonstrate theoretically and experimentally that such an optimization does not necessarily lead to a better entanglement test, if the statistical error is taken into account. Theoretically, we show for different error models that reducing the violation of an inequality can improve the significance. Experimentally, we observe this phenomenon in a four-photon experiment, testing the Mermin and Ardehali inequality for different levels of noise. Furthermore, we provide a way to develop entanglement tests with high statistical significance.

SELECTION OF CITATIONS
SEARCH DETAIL
...