Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 1173, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35246525

ABSTRACT

Neutrons are a valuable tool for non-destructive material investigation as their interaction cross sections with matter are isotope sensitive and can be used complementary to x-rays. So far, most neutron applications have been limited to large-scale facilities such as nuclear research reactors, spallation sources, and accelerator-driven neutron sources. Here we show the design and optimization of a laser-driven neutron source in the epi-thermal and thermal energy range, which is used for non-invasive material analysis. Neutron resonance spectroscopy, neutron radiography, and neutron resonance imaging with moderated neutrons are demonstrated for investigating samples in terms of isotope composition and thickness. The experimental results encourage applications in non-destructive and isotope-sensitive material analysis and pave the way for compact laser-driven neutron sources with high application potential.

2.
Phys Plasmas ; 24(5): 056702, 2017 May.
Article in English | MEDLINE | ID: mdl-28652684

ABSTRACT

Laser-plasma interactions in the novel regime of relativistically induced transparency (RIT) have been harnessed to generate intense ion beams efficiently with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at "table-top" scales in experiments at the LANL Trident Laser. By further optimization of the laser and target, the RIT regime has been extended into a self-organized plasma mode. This mode yields an ion beam with much narrower energy spread while maintaining high ion energy and conversion efficiency. This mode involves self-generation of persistent high magnetic fields (∼104 T, according to particle-in-cell simulations of the experiments) at the rear-side of the plasma. These magnetic fields trap the laser-heated multi-MeV electrons, which generate a high localized electrostatic field (∼0.1 T V/m). After the laser exits the plasma, this electric field acts on a highly structured ion-beam distribution in phase space to reduce the energy spread, thus separating acceleration and energy-spread reduction. Thus, ion beams with narrow energy peaks at up to 18 MeV/nucleon are generated reproducibly with high efficiency (≈5%). The experimental demonstration has been done with 0.12 PW, high-contrast, 0.6 ps Gaussian 1.053 µm laser pulses irradiating planar foils up to 250 nm thick at 2-8 × 1020 W/cm2. These ion beams with co-propagating electrons have been used on Trident for uniform volumetric isochoric heating to generate and study warm-dense matter at high densities. These beam plasmas have been directed also at a thick Ta disk to generate a directed, intense point-like Bremsstrahlung source of photons peaked at ∼2 MeV and used it for point projection radiography of thick high density objects. In addition, prior work on the intense neutron beam driven by an intense deuterium beam generated in the RIT regime has been extended. Neutron spectral control by means of a flexible converter-disk design has been demonstrated, and the neutron beam has been used for point-projection imaging of thick objects. The plans and prospects for further improvements and applications are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...