Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Artif Organs ; 40(8): 719-26, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26816346

ABSTRACT

In heart failure, left ventricular assist device (LVAD) implantation is performed to ensure sufficient cardiac output. Whereas some patients are subsequently weaned from LVAD support, other patients still need heart transplantation. To elucidate underlying mechanisms, we assessed the arrhythmogenic SR-Ca(2+) leak at the time of LVAD implantation (HF-Im) and heart transplantation (HF-Tx) and evaluated the effects of CaMKII-inhibition. Human left-ventricular cardiomyocytes were isolated, paced at 1 Hz for 10 beats to ensure SR-Ca(2+) loading and scanned for diastolic Ca(2+) sparks (confocal microscopy). In HF-Im, the high diastolic spark frequency (CaSpF) of 0.76 ± 0.12 × 100 µm(-1) × s(-1) could be reduced to 0.48 ± 0.10 × 100 µm(-1) × s(-1) by CaMKII inhibition (AIP, 1 µM). The amplitude of Ca(2+) sparks, width, and length was not significantly altered. In sum, CaMKII inhibition yielded a clear tendency toward a reduction of the SR-Ca(2+) leak (n cells/patients = 76/6 vs. 108/6, P = 0.08). In HF-Tx, we detected an even higher CaSpF of 1.00 ± 0.10 100 µm(-1) × s(-1) and a higher SR-Ca(2+) leak compared with HF-Im (increase by 81 ± 33%, n cells/patients = 156/7 vs. 130/7, P < 0.05), which fits to the further decreased LV function. Here, CaMKII inhibition likewise reduced CaSpF (0.35 ± 0.09 100 µm(-1) × s(-1,) P = 0.06) and significantly reduced spark duration (n sparks/patients = 58/3 vs. 159/3, P < 0.05). Conclusively, the SR-Ca(2+) leak was reduced by 69 ± 12% in HF-Tx upon CaMKII inhibition (n cells/patients = 53/3 vs. 91/3, P < 0.05). These data show that the SR-Ca(2+) leak correlates with the development of LV function after LVAD implantation and may represent an important pathomechanism. The fact that CaMKII inhibition reduces the SR-Ca(2+) leak in HF-Tx suggests that CaMKII inhibition may be a promising option to beneficially influence clinical course after LVAD implantation.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium/metabolism , Heart Failure/surgery , Heart-Assist Devices , Myocytes, Cardiac/drug effects , Peptides/pharmacology , Protein Kinase Inhibitors/pharmacology , Adult , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cells, Cultured , Female , Heart Failure/metabolism , Heart Failure/pathology , Heart Transplantation , Heart Ventricles/drug effects , Heart Ventricles/pathology , Heart Ventricles/surgery , Homeostasis/drug effects , Humans , Male , Middle Aged , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
2.
Eur J Heart Fail ; 16(12): 1292-300, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25201344

ABSTRACT

AIMS: The sarcoplasmic reticulum (SR) Ca(2+) leak is an important pathomechanism in heart failure (HF). It has been suggested that Ca(2+) /calmodulin-dependent protein kinase II (CaMKII) is only relevant for the induction of the SR Ca(2+) leak in non-ischaemic but not in ischaemic HF. Therefore, we investigated CaMKII and its targets as well as the functional effects of CaMKII inhibition in human ischaemic cardiomyopathy (ICM, n = 37) and dilated cardiomyopathy (DCM, n = 40). METHODS AND RESULTS: Western blots showed a significantly increased expression (by 54 ± 9%) and autophosphorylation at Thr286 (by 129 ± 29%, P < 0.05 each) of CaMKII in HF compared with healthy myocardium. However, no significant difference could be detected in ICM compared with DCM as to the expression and autophosphorylation of CaMKII nor the phosphorylation of the target sites ryanodine receptor 2 (RyR2)-S2809, RyR2-S2815, and phospholamban-Thr17. Isolated human cardiomyocytes (CMs) of patients with DCM and ICM showed a similar frequency of diastolic Ca(2+) sparks (confocal microscopy) as well as of major arrhythmic events (Ca(2+) waves, spontaneous Ca(2+) transients). Despite a slightly smaller size of Ca(2+) sparks in DCM (P < 0.01), the calculated SR Ca(2+) leak [Ca(2+) spark frequecy (CaSpF) × amplitude × width × duration] did not differ between CMs of ICM vs. DCM. Importantly, CaMKII inhibition by autocamide-2-related inhibitory peptide (AIP, 1 µmol/L) reduced the SR Ca(2+) leak by ∼80% in both aetiologies (P < 0.05 each) and effectively decreased the ratio of arrhythmic cells (P < 0.05). CONCLUSION: Functional and molecular measures of the SR Ca(2+) leak are comparable in human ICM and DCM. CaMKII is equally responsible for the induction of the 'RyR2 leakiness' in both pathologies. Thus, CaMKII inhibition as a therapeutic measure may not be restricted to patients suffering from DCM but rather may be beneficial for the majority of HF patients.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology , Calcium/metabolism , Cardiomyopathy, Dilated/enzymology , Myocardial Ischemia/enzymology , Sarcoplasmic Reticulum/metabolism , Blotting, Western/methods , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Female , Heart Failure/pathology , Humans , Male , Microscopy, Confocal/methods , Middle Aged , Myocardium/enzymology , Myocytes, Cardiac/enzymology , Peptides/pharmacology , Phosphorylation/physiology , Ryanodine Receptor Calcium Release Channel/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...