Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 9(8): 4543-53, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19928116

ABSTRACT

Electromagnetic characterization of CNT films fabricated by thermal decomposition of SiC has been performed. Purification and/or uncapping treatment conditions at an elevated temperature of 400 degrees C under flowing oxygen or carbon dioxide have been studied. A near field microwave microscope was used to measure the real and imaginary parts of the complex permittivity of CNT films through the frequency shift and the change in reciprocal quality factor between two extreme positions of an evanescent microwave probe-tip (in contact with the sample, and away from interaction with it). A theoretical two-point model was proposed to confirm experimental data, which showed poor conductivity of the CNT film as grown but has slight improvement after 40 min treatment.

2.
Phys Med Biol ; 54(3): 699-713, 2009 Feb 07.
Article in English | MEDLINE | ID: mdl-19131676

ABSTRACT

The near-field evanescent microwave microscope is based on a coaxial transmission line resonator with a silver plated tungsten tip protruding through an end-wall aperture. The sensor is used to measure the local dielectric properties of porcine skin in the frequency range from 1 GHz to 15 GHz. The dielectric property of the skin within the near field of the tip frustrates the electric field and measurably changes the transmission line's resonant frequency and quality factor (Q). The shift of the resonator's frequency and Q is measured as a function of tip-sample separation, and a quantitative relationship between the real and imaginary parts of the local dielectric constant using the method of images is established. The associated changes in quality factor image scans of subsurface tissue structure and dielectric properties of skin surface lesions are presented.


Subject(s)
Microscopy, Fluorescence/instrumentation , Microwaves , Plethysmography, Impedance/instrumentation , Skin Physiological Phenomena , Animals , Electric Impedance , Equipment Design , Equipment Failure Analysis , In Vitro Techniques , Microscopy, Fluorescence/methods , Reproducibility of Results , Sensitivity and Specificity , Swine
3.
Nanotechnology ; 19(48): 485704, 2008 Dec 03.
Article in English | MEDLINE | ID: mdl-21836311

ABSTRACT

A series of nanostructured ferroelectric thin films of barium strontium titanate were fabricated using a pulsed laser deposition system with real-time in situ process control. Pulsed laser deposition parameters were controlled during the growth of nanostructured thin films for use in the development of high frequency tunable microwave devices. The thin films were all grown at the same substrate temperature and laser beam energy density, but the chamber oxygen partial pressure (COPP) was varied systematically from 19 mTorr through 1000 Torr. Structural and electromagnetic characterization was performed using atomic force microscopy and evanescent microwave microscopy, respectively. Atomic force microscopy showed a linear increase in grain size with increases in the ambient oxygen pressure from 38 to 150 mTorr and from 300 mTorr to 1000 Torr. The correlation of the microwave properties with the epitaxial film microstructure can be attributed to stresses and polarizability in the film. Microwave characterization showed that a COPP of 75 mTorr yielded the most desirable film in terms of tunability and loss tangent over a wide frequency range.

SELECTION OF CITATIONS
SEARCH DETAIL
...