Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 367(6485): 1485-1489, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32217728

ABSTRACT

Disrupting North Atlantic Deep Water (NADW) ventilation is a key concern in climate projections. We use (sub)centennially resolved bottom water δ13C records that span the interglacials of the last 0.5 million years to assess the frequency of and the climatic backgrounds capable of triggering large NADW reductions. Episodes of reduced NADW in the deep Atlantic, similar in magnitude to glacial events, have been relatively common and occasionally long-lasting features of interglacials. NADW reductions were triggered across the range of recent interglacial climate backgrounds, which demonstrates that catastrophic freshwater outburst floods were not a prerequisite for large perturbations. Our results argue that large NADW disruptions are more easily achieved than previously appreciated and that they occurred in past climate conditions similar to those we may soon face.

2.
Proc Natl Acad Sci U S A ; 117(1): 190-195, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31871153

ABSTRACT

The Greenland Ice Sheet (GIS) has been losing mass at an accelerating rate over the recent decades. Models suggest a possible temperature threshold between 0.8 and 3.2 °C, beyond which GIS decline becomes irreversible. The duration of warmth above a given threshold is also a critical determinant for GIS survival, underlining the role of ocean warming, as its inertia prolongs warmth and triggers longer-term feedbacks. The exact point at which these feedbacks are triggered remains equivocal. Late Pleistocene interglacials provide potential case examples for constraining the past response of the GIS to a range of climate states, including conditions warmer than present. However, little is known about the magnitude and duration of warming near Greenland during these periods. Using high-resolution multiproxy surface ocean climate records off southern Greenland, we show that the previous 4 interglacials over the last ∼450 ka all reached warmer than present climate conditions and exceeded the modeled temperature threshold for GIS collapse but by different magnitudes and durations. Complete deglaciation of the southern GIS in Marine Isotope Stage 11c (MIS 11c; 394.7 to 424.2 ka) occurred under climates only slightly warmer than present (∼0.5 ± 1.6 °C), placing the temperature threshold for major GIS retreat in the lower end of model estimates and within projections for this century.

3.
Science ; 363(6431): 1080-1084, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30846597

ABSTRACT

From 1.25 million to 700,000 years ago, the ice age cycle deepened and lengthened from 41,000- to 100,000-year periodicity, a transition that remains unexplained. Using surface- and bottom-dwelling foraminifera from the Antarctic Zone of the Southern Ocean to reconstruct the deep-to-surface supply of water during the ice ages of the past 1.5 million years, we found that a reduction in deep water supply and a concomitant freshening of the surface ocean coincided with the emergence of the high-amplitude 100,000-year glacial cycle. We propose that this slowing of deep-to-surface circulation (i.e., a longer residence time for Antarctic surface waters) prolonged ice ages by allowing the Antarctic halocline to strengthen, which increased the resistance of the Antarctic upper water column to orbitally paced drivers of carbon dioxide release.

4.
Science ; 343(6175): 1129-32, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24557839

ABSTRACT

Deep ocean circulation has been considered relatively stable during interglacial periods, yet little is known about its behavior on submillennial time scales. Using a subcentennially resolved epibenthic foraminiferal δ(13)C record, we show that the influence of North Atlantic Deep Water (NADW) was strong at the onset of the last interglacial period and was then interrupted by several prominent centennial-scale reductions. These NADW transients occurred during periods of increased ice rafting and southward expansions of polar water influence, suggesting that a buoyancy threshold for convective instability was triggered by freshwater and circum-Arctic cryosphere changes. The deep Atlantic chemical changes were similar in magnitude to those associated with glaciations, implying that the canonical view of a relatively stable interglacial circulation may not hold for conditions warmer and fresher than at present.


Subject(s)
Global Warming , Ice Cover , Seawater/chemistry , Atlantic Ocean
SELECTION OF CITATIONS
SEARCH DETAIL
...