Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 5: 3980, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24875932

ABSTRACT

In recent years, impressive demonstrations related to quantum information processing have been realized. The scalability of quantum interactions between arbitrary qubits within an array remains however a significant hurdle to the practical realization of a quantum computer. Among the proposed ideas to achieve fully scalable quantum processing, the use of photons is appealing because they can mediate long-range quantum interactions and could serve as buses to build quantum networks. Quantum dots or nitrogen-vacancy centres in diamond can be coupled to light, but the former system lacks optical homogeneity while the latter suffers from a low dipole moment, rendering their large-scale interconnection challenging. Here, through the complete quantum control of exciton qubits, we demonstrate that nitrogen isoelectronic centres in GaAs combine both the uniformity and predictability of atomic defects and the dipole moment of semiconductor quantum dots. This establishes isoelectronic centres as a promising platform for quantum information processing.

2.
Nat Commun ; 4: 2882, 2013.
Article in English | MEDLINE | ID: mdl-24287692

ABSTRACT

The interaction between cavity modes and optical transitions leads to new coupled light-matter states in which the energy is periodically exchanged between the matter states and the optical mode. Here we present experimental evidence of optical strong coupling between modes of individual sub-wavelength metamaterial nanocavities and engineered optical transitions in semiconductor heterostructures. We show that this behaviour is generic by extending the results from the mid-infrared (~10 µm) to the near-infrared (~1.5 µm). Using mid-infrared structures, we demonstrate that the light-matter coupling occurs at the single resonator level and with extremely small interaction volumes. We calculate a mode volume of 4.9 × 10(-4) (λ/n)(3) from which we infer that only ~2,400 electrons per resonator participate in this energy exchange process.

3.
Opt Express ; 21(26): 32572-81, 2013 Dec 30.
Article in English | MEDLINE | ID: mdl-24514850

ABSTRACT

We present the design, realization and characterization of strong coupling between an intersubband transition and a monolithic metamaterial nanocavity in the mid-infrared spectral range. We use a ground plane in conjunction with a planar metamaterial resonator for full three-dimensional confinement of the optical mode. This reduces the mode volume by a factor of 1.9 compared to a conventional metamaterial resonator while maintaining the same Rabi frequency. The conductive ground plane is implemented using a highly doped n+ layer which allows us to integrate it monolithically into the device and simplify fabrication.

4.
Phys Rev Lett ; 93(6): 067403, 2004 Aug 06.
Article in English | MEDLINE | ID: mdl-15323662

ABSTRACT

Using optical spectroscopy with diffraction limited spatial resolution, the possibility of measuring the luminescence from single impurity centers in a semiconductor is demonstrated. Selectively studying individual centers that are formed by two neighboring nitrogen atoms in GaAs makes it possible to unveil their otherwise concealed polarization anisotropy, analyze their selection rules, identify their particular configuration, map their spatial distribution, and demonstrate the presence of a diversity of local environments. Circumventing the limitation imposed by ensemble averaging and the ability to discriminate the individual electronic responses from discrete emitters provides an unprecedented perspective on the nanoscience of impurities.

SELECTION OF CITATIONS
SEARCH DETAIL
...