Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(8): e2320262121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38349879

ABSTRACT

The human malaria parasite Plasmodium falciparum requires exogenous fatty acids to support its growth during the pathogenic, asexual erythrocytic stage. Host serum lysophosphatidylcholine (LPC) is a significant fatty acid source, yet the metabolic processes responsible for the liberation of free fatty acids from exogenous LPC are unknown. Using an assay for LPC hydrolysis in P. falciparum-infected erythrocytes, we have identified small-molecule inhibitors of key in situ lysophospholipase activities. Competitive activity-based profiling and generation of a panel of single-to-quadruple knockout parasite lines revealed that two enzymes of the serine hydrolase superfamily, termed exported lipase (XL) 2 and exported lipase homolog (XLH) 4, constitute the dominant lysophospholipase activities in parasite-infected erythrocytes. The parasite ensures efficient exogenous LPC hydrolysis by directing these two enzymes to distinct locations: XL2 is exported to the erythrocyte, while XLH4 is retained within the parasite. While XL2 and XLH4 were individually dispensable with little effect on LPC hydrolysis in situ, loss of both enzymes resulted in a strong reduction in fatty acid scavenging from LPC, hyperproduction of phosphatidylcholine, and an enhanced sensitivity to LPC toxicity. Notably, growth of XL/XLH-deficient parasites was severely impaired when cultured in media containing LPC as the sole exogenous fatty acid source. Furthermore, when XL2 and XLH4 activities were ablated by genetic or pharmacologic means, parasites were unable to proliferate in human serum, a physiologically relevant fatty acid source, revealing the essentiality of LPC hydrolysis in the host environment and its potential as a target for anti-malarial therapy.


Subject(s)
Malaria, Falciparum , Parasites , Animals , Humans , Plasmodium falciparum , Lysophosphatidylcholines/metabolism , Lysophospholipase/genetics , Lysophospholipase/metabolism , Malaria, Falciparum/parasitology , Erythrocytes/metabolism , Parasites/metabolism , Fatty Acids/metabolism , Lipase/metabolism , Protozoan Proteins/metabolism
2.
bioRxiv ; 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37131712

ABSTRACT

The human malaria parasite Plasmodium falciparum requires exogenous fatty acids to support its growth during the pathogenic, asexual erythrocytic stage. Host serum lysophosphatidylcholine (LPC) is a significant fatty acid source, yet the metabolic processes responsible for the liberation of free fatty acids from exogenous LPC are unknown. Using a novel assay for LPC hydrolysis in P. falciparum-infected erythrocytes, we have identified small-molecule inhibitors of key in situ lysophospholipase activities. Competitive activity-based profiling and generation of a panel of single-to-quadruple knockout parasite lines revealed that two enzymes of the serine hydrolase superfamily, termed exported lipase (XL) 2 and exported lipase homolog (XLH) 4, are the dominant lysophospholipase activities in parasite-infected erythrocytes. The parasite ensures efficient exogenous LPC hydrolysis by directing these two enzymes to distinct locations: XL2 is exported to the erythrocyte, while XLH4 is retained within the parasite. While XL2 and XLH4 were individually dispensable with little effect on LPC hydrolysis in situ, loss of both enzymes resulted in a strong reduction in fatty acid scavenging from LPC, hyperproduction of phosphatidylcholine, and an enhanced sensitivity to LPC toxicity. Notably, growth of XL/XLH-deficient parasites was severely impaired when cultured in media containing LPC as the sole exogenous fatty acid source. Furthermore, when XL2 and XLH4 activities were ablated by genetic or pharmacologic means, parasites were unable to proliferate in human serum, a physiologically-relevant fatty acid source, revealing the essentiality of LPC hydrolysis in the host environment and its potential as a target for anti-malarial therapy.

3.
Microbiol Spectr ; 10(6): e0245622, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36314974

ABSTRACT

A sensitive and quantitative fluorescence-based approach is presented for characterizing fatty acid acquisition and lipid biosynthesis by asexually replicating, intraerythrocytic Plasmodium falciparum. We show that a BODIPY-containing, green-fluorescent fatty acid analog is efficiently and rapidly incorporated into parasite neutral lipids and phospholipids. Prelabeling with a red-fluorescent ceramide analog permits normalization and enables reliable quantitation of glycerolipid labeling. Inhibition of lipid labeling by competition with natural fatty acids and by acyl-coenzyme A synthetase and diacylglycerol acyltransferase inhibitors demonstrates that the fluorescent fatty acid probe is acquired, activated, and transferred to lipids through physiologically-relevant pathways. To assess its utility in discovering small molecules that block parasite lipid biosynthesis, the lipid labeling assay was used to screen a panel of mammalian lipase inhibitors and a selection of compounds from the "Malaria Box" anti-malarial collection. Several compounds were identified that inhibited the incorporation of the fluorescent fatty acid probe into lipids in cultured parasites at low micromolar concentrations. Two contrasting profiles of suppression of neutral lipid and phospholipid synthesis were observed, which implies the inhibition of distinct pathways. IMPORTANCE The human malaria parasite Plasmodium falciparum relies on fatty acid scavenging to supply this essential precursor of lipid synthesis during its asexual replication cycle in human erythrocytes. This dependence on host fatty acids represents a potential vulnerability that can be exploited to develop new anti-malarial therapies. The quantitative experimental approach described here provides a platform for simultaneously interrogating multiple facets of lipid metabolism- fatty acid uptake, fatty acyl-CoA synthesis, and neutral lipid and phospholipid biosynthesis- and of identifying cell-permeable inhibitors that are active in situ.


Subject(s)
Antimalarials , Plasmodium falciparum , Animals , Humans , Plasmodium falciparum/metabolism , Fatty Acids/metabolism , Antimalarials/pharmacology , Fluorescent Dyes/metabolism , Phospholipids/metabolism , Mammals
4.
Bioorg Med Chem Lett ; 30(17): 127348, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32738996

ABSTRACT

Antimalarial candidates possessing novel mechanisms of action are needed to control drug resistant Plasmodium falciparum. We were drawn to Malaria Box compound 1 (MMV665831) by virtue of its excellent in vitro potency, and twelve analogs were prepared to probe its structure-activity relationship. Modulation of the diethyl amino group was fruitful, producing compound 25, which was twice as potent as 1 against cultured parasites. Efforts were made to modify the phenolic Mannich base functionality of 1, to prevent formation of a reactive quinone methide. Homologated analog 28 had reduced potency relative to 1, but still inhibited growth with EC50 ≤ 200 nM. Thus, the antimalarial activity of 1 does not derive from quinone methide formation. Chemical stability studies on dimethyl analog 2 showed remarkable hydrolytic stability of both the phenolic Mannich base and ethyl ester moieties, and 1 was evaluated for in vivo efficacy in P. berghei-infected mice (40 mg/kg, oral). Unfortunately, no reduction in parasitemia was seen relative to control. These results are discussed in the context of measured plasma and hepatocyte stabilities, with reference to structurally-related, orally-efficacious antimalarials.


Subject(s)
Antimalarials/pharmacology , Mannich Bases/chemistry , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemistry , Antimalarials/therapeutic use , Disease Models, Animal , Malaria/drug therapy , Malaria/parasitology , Mannich Bases/pharmacology , Mannich Bases/therapeutic use , Mice , Plasmodium berghei/pathogenicity
5.
Sci Rep ; 9(1): 17532, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772212

ABSTRACT

Enzymes of the serine hydrolase superfamily are ubiquitous, highly versatile catalysts that mediate a wide variety of metabolic reactions in eukaryotic cells, while also being amenable to selective inhibition. We have employed a fluorophosphonate-based affinity capture probe and mass spectrometry to explore the expression profile and metabolic roles of the 56-member P. falciparum serine hydrolase superfamily in the asexual erythrocytic stage of P. falciparum. This approach provided a detailed census of active serine hydrolases in the asexual parasite, with identification of 21 active serine hydrolases from α/ß hydrolase, patatin, and rhomboid protease families. To gain insight into their functional roles and substrates, the pan-lipase inhibitor isopropyl dodecylfluorophosphonate was employed for competitive activity-based protein profiling, leading to the identification of seven serine hydrolases with potential lipolytic activity. We demonstrated how a chemoproteomic approach can provide clues to the specificity of serine hydrolases by using a panel of neutral lipase inhibitors to identify an enzyme that reacts potently with a covalent monoacylglycerol lipase inhibitor. In combination with existing phenotypic data, our studies define a set of serine hydrolases that likely mediate critical metabolic reactions in asexual parasites and enable rational prioritization of future functional characterization and inhibitor development efforts.


Subject(s)
Erythrocytes/parasitology , Hydrolases/metabolism , Plasmodium falciparum/enzymology , Protozoan Proteins/metabolism , Biotin/analogs & derivatives , Humans , Hydrolases/antagonists & inhibitors , Life Cycle Stages , Lipolysis , Plasmodium falciparum/growth & development , Proteomics , Serine/metabolism
6.
mSphere ; 4(3)2019 05 08.
Article in English | MEDLINE | ID: mdl-31068431

ABSTRACT

The human malaria parasite Plasmodium falciparum causes disease as it replicates within the host's erythrocytes. We have found that an erythrocyte serine hydrolase, acylpeptide hydrolase (APEH), accumulates within developing asexual parasites. Internalization of APEH was associated with a proteolytic event that reduced the size of the catalytic polypeptide from 80 to 55 kDa. A triazole urea APEH inhibitor, termed AA74-1, was employed to characterize the role of parasite-internalized APEH. In cell lysates, AA74-1 was a potent and highly selective inhibitor of both host erythrocyte and parasite-internalized APEH. When added to cultures of ring-stage parasites, AA74-1 was a poor inhibitor of replication over one asexual replication cycle; however, its potency increased dramatically after a second cycle. This enhancement of potency was not abrogated by the addition of exogenous isopentenyl pyrophosphate, the sole essential product of apicoplast metabolism. High-potency inhibition of parasite growth could be effected by adding AA74-1 to schizont-stage parasites, which resulted in parasite death at the early trophozoite stage of the ensuing replication cycle. Analysis of APEH inhibition in intact cultured cells revealed that host erythrocyte APEH, but not the parasite-internalized APEH pool, was inhibited by exogenous AA74-1. Our data support a model for the mode of parasiticidal activity of AA74-1 whereby sustained inactivation of host erythrocyte APEH is required prior to merozoite invasion and during parasite asexual development. Together, these findings provide evidence for an essential catalytic role for parasite-internalized APEH.IMPORTANCE Nearly half a million deaths were attributed to malaria in 2017. Protozoan parasites of the genus Plasmodium cause disease in humans while replicating asexually within the host's erythrocytes, with P. falciparum responsible for most of the mortality. Understanding how Plasmodium spp. have adapted to their unique host erythrocyte environment is important for developing malaria control strategies. Here, we demonstrate that P. falciparum coopts a host erythrocyte serine hydrolase termed acylpeptide hydrolase. By showing that the parasite requires acylpeptide hydrolase activity for replication, we expand our knowledge of host cell factors that contribute to robust parasite growth.


Subject(s)
Erythrocytes/enzymology , Erythrocytes/parasitology , Host-Parasite Interactions , Peptide Hydrolases/metabolism , Plasmodium falciparum/physiology , Reproduction, Asexual , Cells, Cultured , Humans , Malaria, Falciparum/parasitology , Plasmodium falciparum/growth & development , Protozoan Proteins/metabolism
7.
Sci Rep ; 8(1): 13578, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30206341

ABSTRACT

Plasmodium falciparum multidrug resistance constitutes a major obstacle to the global malaria elimination campaign. Specific mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) mediate resistance to the 4-aminoquinoline drug chloroquine and impact parasite susceptibility to several partner agents used in current artemisinin-based combination therapies, including amodiaquine. By examining gene-edited parasites, we report that the ability of the wide-spread Dd2 PfCRT isoform to mediate chloroquine and amodiaquine resistance is substantially reduced by the addition of the PfCRT L272F mutation, which arose under blasticidin selection. We also provide evidence that L272F confers a significant fitness cost to asexual blood stage parasites. Studies with amino acid-restricted media identify this mutant as a methionine auxotroph. Metabolomic analysis also reveals an accumulation of short, hemoglobin-derived peptides in the Dd2 + L272F and Dd2 isoforms, compared with parasites expressing wild-type PfCRT. Physiologic studies with the ionophores monensin and nigericin support an impact of PfCRT isoforms on Ca2+ release, with substantially reduced Ca2+ levels observed in Dd2 + L272F parasites. Our data reveal a central role for PfCRT in regulating hemoglobin catabolism, amino acid availability, and ionic balance in P. falciparum, in addition to its role in determining parasite susceptibility to heme-binding 4-aminoquinoline drugs.


Subject(s)
Chloroquine/pharmacology , Drug Resistance, Multiple/genetics , Erythrocytes/drug effects , Hemoglobins/metabolism , Host-Parasite Interactions , Membrane Transport Proteins/genetics , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Amodiaquine/pharmacology , Antimalarials/pharmacology , Artemisinins/pharmacology , Calcium/metabolism , Cells, Cultured , Erythrocytes/metabolism , Erythrocytes/parasitology , Gene Expression , Humans , Ion Transport/drug effects , Ionophores/pharmacology , Membrane Transport Proteins/metabolism , Monensin/pharmacology , Mutation , Nigericin/pharmacology , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Pyrrolidinones/pharmacology
8.
Mol Biochem Parasitol ; 217: 7-12, 2017 10.
Article in English | MEDLINE | ID: mdl-28811124

ABSTRACT

The aminopeptidase PfA-M1 is a key contributor to peptide catabolism in the human malaria parasite Plasmodium falciparum. PfA-M1 substrate specificity is shaped by the cylindrical S1 subsite, which accommodates the sidechain of the substrate P1 residue. At the top of the S1 subsite are two "cap" residues, E572 and M1034, that are positioned to influence S1 subsite specificity. In this study, we have mutated the cap residues, individually and together, and have evaluated the effects on PfA-M1 specificity and catalytic efficiency. When the P1 residue was too small to engage the cap residues, the mutations had no effect on catalysis. Hydrolysis of dipeptide substrates with a basic P1 residue was significantly impaired in the E572A mutant, most likely due to the loss of a stabilizing salt bridge between E572 and the P1 sidechain. With M1034A, a substantial reduction in catalytic efficiency was observed when the P1 sidechain was large and non-polar. The double E572A/M1034A exhibited significant decreases in catalytic efficiency for most substrates. This effect was not reversed with the polar substitutions E572N/M1034Q, which replaced the PfA-M1 cap residues with those of Escherichia coli aminopeptidase N. Both E572 and M1034 contributed to the binding of the competitive aminopeptidase inhibitor bestatin.


Subject(s)
Aminopeptidases/metabolism , Plasmodium falciparum/enzymology , Protozoan Proteins/metabolism , Amino Acid Substitution , Aminopeptidases/genetics , Catalysis , Hydrolysis , Mutation , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Substrate Specificity
9.
J Biomed Opt ; 21(9): 90501, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27598559

ABSTRACT

A dual-modality birefringence/phase imaging system is presented. The system features a crystal retarder that provides polarization mixing and generates two interferometric carrier waves in a single signal spectrum. The retardation and orientation of sample birefringence can then be measured simultaneously based on spectral multiplexing interferometry. Further, with the addition of a Nomarski prism, the same setup can be used for quantitative differential interference contrast (DIC) imaging. Sample phase can then be obtained with two-dimensional integration. In addition, birefringence-induced phase error can be corrected using the birefringence data. This dual-modality approach is analyzed theoretically with Jones calculus and validated experimentally with malaria-infected red blood cells. The system generates not only corrected DIC and phase images, but a birefringence map that highlights the distribution of hemozoin crystals.


Subject(s)
Erythrocytes/parasitology , Image Processing, Computer-Assisted/methods , Malaria, Falciparum/diagnostic imaging , Microscopy/methods , Birefringence , Hemeproteins/chemistry , Humans , Plasmodium falciparum
10.
Bioorg Med Chem Lett ; 26(19): 4846-4850, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27544402

ABSTRACT

Despite the troubling psychiatric side-effects it causes in some patients, mefloquine (MQ) has been used for malaria prophylaxis and therapy, due to its activity against all Plasmodium species, its ease of dosing, and its relative safety in children and pregnant women. Yet at present there is no consensus on the mechanism of antimalarial action of MQ. Two leading hypotheses for the mechanism of MQ are inhibition of heme crystallization and inhibition of host cell hemoglobin endocytosis. In this report we show that MQ is a potent and rapid inhibitor of amino acid efflux from intact parasitized erythrocytes, which is a measure of the in vivo rate of host hemoglobin endocytosis and catabolism. To further explore the mechanism of action of MQ, we have compared the effects of MQ and 18 non-piperidine analogs on amino acid efflux and parasite growth. Among these closely related compounds, an excellent correlation over nearly 4 log units is seen for 50% inhibition concentration (IC50) values for parasite growth and leucine efflux. These data and other observations are consistent with the hypothesis that the antimalarial action of these compounds derives from inhibition of hemoglobin endocytosis.


Subject(s)
Antimalarials/pharmacology , Mefloquine/pharmacology , Plasmodium falciparum/drug effects , Animals , Inhibitory Concentration 50 , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism
11.
Mol Cell Proteomics ; 15(10): 3243-3255, 2016 10.
Article in English | MEDLINE | ID: mdl-27432909

ABSTRACT

An essential step in the transmission of the malaria parasite to the Anopheles vector is the transformation of the mature gametocytes into gametes in the mosquito gut, where they egress from the erythrocytes and mate to produce a zygote, which matures into a motile ookinete. Osmiophilic bodies are electron dense secretory organelles of the female gametocytes which discharge their contents during gamete formation, suggestive of a role in gamete egress. Only one protein with no functional annotation, Pfg377, is described to specifically reside in osmiophilic bodies in Plasmodium falciparum Importantly, Pfg377 defective gametocytes lack osmiophilic bodies and fail to infect mosquitoes, as confirmed here with newly produced pfg377 disrupted parasites. The unique feature of Pfg377 defective gametocytes of lacking osmiophilic bodies was here exploited to perform comparative, label free, global and affinity proteomics analyses of mutant and wild type gametocytes to identify components of these organelles. Subcellular localization studies with fluorescent reporter gene fusions and specific antibodies revealed an osmiophilic body localization for four out of five candidate gene products analyzed: the proteases PfSUB2 (subtilisin 2) and PfDPAP2 (Dipeptidyl aminopeptidase 2), the ortholog of the osmiophilic body component of the rodent malaria gametocytes PbGEST and a previously nonannotated 13 kDa protein. These results establish that osmiophilic bodies and their components are dispensable or marginally contribute (PfDPAP2) to gamete egress. Instead, this work reveals a previously unsuspected role of these organelles in P. falciparum development in the mosquito vector.


Subject(s)
Organelles/metabolism , Plasmodium falciparum/physiology , Proteomics/methods , Protozoan Proteins/analysis , Animals , Anopheles/parasitology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Female , Germ Cells/metabolism , Mutation , Protozoan Proteins/genetics , Subtilisins/metabolism
12.
Mol Biochem Parasitol ; 201(2): 116-22, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26215764

ABSTRACT

The endocytosis and catabolism of large quantities of host cell hemoglobin is a hallmark of the intraerythrocytic asexual stage of the human malaria parasite Plasmodium falciparum. It is known that the parasite's production of amino acids from hemoglobin far exceeds its metabolic needs. Here, we show that P. falciparum effluxes large quantities of certain non-polar (Ala, Leu, Val, Pro, Phe, Gly) and polar (Ser, Thr, His) amino acids to the external medium. That these amino acids originate from hemoglobin catabolism is indicated by the strong correlation between individual amino acid efflux rates and their abundances in hemoglobin, and the ability of the food vacuole falcipain inhibitor E-64d to greatly suppress efflux rates. We then developed a rapid, sensitive and precise method for quantifying flux through the hemoglobin endocytic-catabolic pathway that is based on leucine efflux. Optimization of the method involved the generation of a novel amino acid-restricted RPMI formulation as well as the validation of D-norvaline as an internal standard. The utility of this method was demonstrated by characterizing the effects of the phosphatidylinositol-3-kinase inhibitors wortmannin and dihydroartemisinin on the kinetics of Leu efflux. Both compounds rapidly inhibited Leu efflux, which is consistent with a role for phosphtidylinositol-3-phosphate production in the delivery of hemoglobin to the food vacuole; however, wortmannin inhibition was transient, which was likely due to the instability of this compound in culture medium. The simplicity, convenience and non-invasive nature of the Leu efflux assay described here makes it ideal for characterizing the in vivo kinetics of hemoglobin endocytosis and catabolism, for inhibitor target validation studies, and for medium-throughput screens to identify novel inhibitors of cytostomal endocytosis.


Subject(s)
Amino Acids/metabolism , Biological Transport, Active , Endocytosis , Hemoglobins/metabolism , Metabolic Flux Analysis/methods , Plasmodium falciparum/metabolism , Androstadienes/metabolism , Artemisinins/metabolism , Enzyme Inhibitors/metabolism , Metabolic Flux Analysis/standards , Metabolism , Plasmodium falciparum/drug effects , Reference Standards , Valine/analogs & derivatives , Valine/metabolism , Wortmannin
13.
Eukaryot Cell ; 14(2): 128-39, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25446055

ABSTRACT

The malaria parasite harbors a relict plastid called the apicoplast and its discovery opened a new avenue for drug discovery and development due to its unusual, nonmammalian metabolism. The apicoplast is essential during the asexual intraerythrocytic and hepatic stages of the parasite, and there is strong evidence supporting its essential metabolic role during the mosquito stages of the parasite. Supply of the isoprenoid building blocks isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) is the essential metabolic function of the apicoplast during the asexual intraerythrocytic stages. However, the metabolic role of the apicoplast during gametocyte development, the malaria stages transmitted to the mosquito, remains unknown. In this study, we showed that production of IPP for isoprenoid biosynthesis is the essential metabolic function of the apicoplast during gametocytogenesis, by obtaining normal gametocytes lacking the apicoplast when supplemented with IPP. When IPP supplementation was removed early in gametocytogenesis, developmental defects were observed, supporting the essential role of isoprenoids for normal gametocytogenesis. Furthermore, mosquitoes infected with gametocytes lacking the apicoplast developed fewer and smaller oocysts that failed to produce sporozoites. This finding further supports the essential role of the apicoplast in establishing a successful infection in the mosquito vector. Our study supports isoprenoid biosynthesis as a valid drug target for development of malaria transmission-blocking inhibitors.


Subject(s)
Apicoplasts/metabolism , Hemiterpenes/biosynthesis , Life Cycle Stages , Plasmodium falciparum/metabolism , Animals , Gametogenesis , Organophosphorus Compounds , Plasmodium falciparum/growth & development
14.
PLoS One ; 9(2): e89771, 2014.
Article in English | MEDLINE | ID: mdl-24587025

ABSTRACT

During the asexual intraerythrocytic stage, the malaria parasite Plasmodium falciparum must traffic newly-synthesized proteins to a broad array of destinations within and beyond the parasite's plasma membrane. In this study, we have localized two well-conserved protein components of eukaryotic endosomes, the retromer complex and the small GTPase Rab7, to define a previously-undescribed endosomal compartment in P. falciparum. Retromer and Rab7 co-localized to a small number of punctate structures within parasites. These structures, which we refer to as endosomes, lie in close proximity to the Golgi apparatus and, like the Golgi apparatus, are inherited by daughter merozoites. However, the endosome is clearly distinct from the Golgi apparatus as neither retromer nor Rab7 redistributed to the endoplasmic reticulum upon brefeldin A treatment. Nascent rhoptries (specialized secretory organelles required for invasion) developed adjacent to endosomes, an observation that suggests a role for the endosome in rhoptry biogenesis. A P. falciparum homolog of the sortilin family of protein sorting receptors (PfSortilin) was localized to the Golgi apparatus. Together, these results elaborate a putative Golgi-to-endosome protein sorting pathway in asexual blood stage parasites and suggest that one role of retromer is to mediate the retrograde transport of PfSortilin from the endosome to the Golgi apparatus.


Subject(s)
Endosomes/physiology , Golgi Apparatus/physiology , Plasmodium falciparum/physiology , Protein Transport/physiology , Adaptor Proteins, Vesicular Transport/metabolism , Amino Acid Sequence , Blotting, Southern , Brefeldin A , Endosomes/metabolism , Fluorescent Antibody Technique , Golgi Apparatus/metabolism , Immunoblotting , Molecular Sequence Data , Organelles/physiology , Sequence Alignment , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
15.
Amino Acids ; 46(4): 931-43, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24381006

ABSTRACT

Mammalian cathepsin C is primarily responsible for the removal of N-terminal dipeptides and activation of several serine proteases in inflammatory or immune cells, while its malarial parasite ortholog dipeptidyl aminopeptidase 1 plays a crucial role in catabolizing the hemoglobin of its host erythrocyte. In this report, we describe the systematic substrate specificity analysis of three cathepsin C orthologs from Homo sapiens (human), Bos taurus (bovine) and Plasmodium falciparum (malaria parasite). Here, we present a new approach with a tailored fluorogenic substrate library designed and synthesized to probe the S1 and S2 pocket preferences of these enzymes with both natural and a broad range of unnatural amino acids. Our approach identified very efficiently hydrolyzed substrates containing unnatural amino acids, which resulted in the design of significantly better substrates than those previously known. Additionally, in this study significant differences in terms of the structures of optimal substrates for human and malarial orthologs are important from the therapeutic point of view. These data can be also used for the design of specific inhibitors or activity-based probes.


Subject(s)
Amino Acids/chemistry , Cathepsin C/chemistry , Dipeptides/chemistry , Plasmodium falciparum/enzymology , Protozoan Proteins/chemistry , Amino Acids/metabolism , Animals , Cathepsin C/metabolism , Cattle , Dipeptides/chemical synthesis , Dipeptides/metabolism , Humans , Kinetics , Molecular Structure , Plasmodium falciparum/chemistry , Protozoan Proteins/metabolism , Substrate Specificity
16.
J Biol Chem ; 288(36): 26004-26012, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23897806

ABSTRACT

M1 family metallo-aminopeptidases fulfill a wide range of critical and in some cases medically relevant roles in humans and human pathogens. The specificity of M1-aminopeptidases is dominated by the interaction of the well defined S1 subsite with the side chain of the first (P1) residue of the substrate and can vary widely. Extensive natural variation occurs at one of the residues that contributes to formation of the cylindrical S1 subsite. We investigated whether this natural variation contributes to diversity in S1 subsite specificity. Effects of 11 substitutions of the S1 subsite residue valine 459 in the Plasmodium falciparum aminopeptidase PfA-M1 and of three substitutions of the homologous residue methionine 260 in Escherichia coli aminopeptidase N were characterized. Many of these substitutions altered steady-state kinetic parameters for dipeptide hydrolysis and remodeled S1 subsite specificity. The most dramatic change in specificity resulted from substitution with proline, which collapsed S1 subsite specificity such that only substrates with P1-Arg, -Lys, or -Met were appreciably hydrolyzed. The structure of PfA-M1 V459P revealed that the proline substitution induced a local conformational change in the polypeptide backbone that resulted in a narrowed S1 subsite. The restricted specificity and active site backbone conformation of PfA-M1 V459P mirrored those of endoplasmic reticulum aminopeptidase 2, a human enzyme with proline in the variable S1 subsite position. Our results provide compelling evidence that changes in the variable residue in the S1 subsite of M1-aminopeptidases have facilitated the evolution of new specificities and ultimately novel functions for this important class of enzymes.


Subject(s)
CD13 Antigens , Escherichia coli Proteins , Escherichia coli/enzymology , Evolution, Molecular , Mutation, Missense , Plasmodium falciparum/enzymology , Protozoan Proteins , Amino Acid Substitution , CD13 Antigens/chemistry , CD13 Antigens/genetics , Catalysis , Dipeptides/chemistry , Dipeptides/genetics , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Humans , Hydrolysis , Plasmodium falciparum/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics
17.
Mol Biochem Parasitol ; 186(1): 29-37, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23000576

ABSTRACT

Catabolism of glycerophospholipids during the rapid growth of the asexual intraerythrocytic malaria parasite may contribute to membrane recycling and the acquisition of lipid biosynthetic precursors from the host. To better understand the scope of lipid catabolism in Plasmodium falciparum, we have characterized a malarial homolog of bacterial glycerophosphodiesterases. These enzymes catalyze the hydrolysis of glycerophosphodiesterases that are generated by phospholipase-catalyzed removal of the two acyl groups from glycerophospholipids. The P. falciparum glycerophosphodiesterase (PfGDPD) exhibits an unusual tripartite distribution during the asexual blood stage with pools of enzyme in the parasitophorous vacuole, food vacuole and cytosol. Efforts to disrupt the chromosomal PfGDPD coding sequence were unsuccessful, which implies that the enzyme is important for efficient parasite growth. Tagging of the endogenous pool of PfGDPD with a conditional aggregation domain partially perturbed the distribution of the enzyme in the parasitophorous vacuole but had no discernable effect on growth in culture. Kinetic characterization of the hydrolysis of glycerophosphocholine by recombinant PfGDPD, an Mg(2+)-dependent enzyme, yielded steady-state parameters that were comparable to those of a homologous bacterial glycerophosphodiesterase. Together, these results suggest a physiological role for PfGDPD in glycerophospholipid catabolism in multiple subcellular compartments. Possibilities for what this role might be are discussed.


Subject(s)
Erythrocytes/parasitology , Phosphoric Diester Hydrolases/metabolism , Plasmodium falciparum/enzymology , Plasmodium falciparum/physiology , Virulence Factors/metabolism , Cations, Divalent/metabolism , Coenzymes/metabolism , Cytosol/enzymology , Gene Knockout Techniques , Genes, Essential , Glycerophospholipids/metabolism , Hydrolysis , Kinetics , Magnesium/metabolism , Phosphoric Diester Hydrolases/genetics , Plasmodium falciparum/genetics , Vacuoles/enzymology , Virulence Factors/genetics
18.
Mol Biochem Parasitol ; 183(1): 70-7, 2012 May.
Article in English | MEDLINE | ID: mdl-22348949

ABSTRACT

The M1-family aminopeptidase PfA-M1 catalyzes the last step in the catabolism of human hemoglobin to amino acids in the Plasmodium falciparum food vacuole. In this study, the structural features of the substrate that promote efficient PfA-M1-catalyzed peptide bond hydrolysis were analyzed. X-Ala and Ala-X dipeptide substrates were employed to characterize the specificities of the enzyme's S1 and S1' subsites. Both subsites exhibited a preference for basic and hydrophobic sidechains over polar and acidic sidechains. The relative specificity of the S1 subsite was similar over the pH range 5.5-7.5. Substrate P1 and P1' residues affected both K(m) and k(cat), revealing that sidechain-subsite interactions not only drive the formation of the Michaelis complex but also influence the rates of ensuing chemical steps. Only a small fraction of the available binding energy was exploited in interactions between substrate sidechains and the S1 and S1' subsites, which indicates a modest level of complementarity. There was no correlation between S1 and S1' specificities and amino acid abundance in hemoglobin. Interactions between PfA-M1 and the backbone atoms of the P1' and P2' residues as well as the P2' sidechain further contributed to the catalytic efficiency of substrate hydrolysis. By demonstrating the engagement of multiple, broad-specificity subsites in PfA-M1, these studies provide insight into how this enzyme is able to efficiently generate amino acids from highly sequence-diverse di- and oligopeptides in the food vacuole.


Subject(s)
Aminopeptidases/chemistry , Plasmodium falciparum/enzymology , Proteolysis , Protozoan Proteins/chemistry , Amino Acid Motifs , Catalytic Domain , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Oligopeptides/chemistry , Substrate Specificity , Zinc/chemistry
19.
Proc Natl Acad Sci U S A ; 108(34): E526-34, 2011 Aug 23.
Article in English | MEDLINE | ID: mdl-21844374

ABSTRACT

Malaria causes worldwide morbidity and mortality, and while chemotherapy remains an excellent means of malaria control, drug-resistant parasites necessitate the discovery of new antimalarials. Peptidases are a promising class of drug targets and perform several important roles during the Plasmodium falciparum erythrocytic life cycle. Herein, we report a multidisciplinary effort combining activity-based protein profiling, biochemical, and peptidomic approaches to functionally analyze two genetically essential P. falciparum metallo-aminopeptidases (MAPs), PfA-M1 and Pf-LAP. Through the synthesis of a suite of activity-based probes (ABPs) based on the general MAP inhibitor scaffold, bestatin, we generated specific ABPs for these two enzymes. Specific inhibition of PfA-M1 caused swelling of the parasite digestive vacuole and prevented proteolysis of hemoglobin (Hb)-derived oligopeptides, likely starving the parasite resulting in death. In contrast, inhibition of Pf-LAP was lethal to parasites early in the life cycle, prior to the onset of Hb degradation suggesting that Pf-LAP has an essential role outside of Hb digestion.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Leucine/analogs & derivatives , Malaria/parasitology , Molecular Probe Techniques , Molecular Probes/metabolism , Multigene Family , Amino Acid Sequence , Aminopeptidases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hemoglobins/metabolism , Leucine/chemistry , Leucine/pharmacology , Leucyl Aminopeptidase/antagonists & inhibitors , Models, Molecular , Molecular Sequence Data , Peptide Library , Peptides/chemistry , Peptides/metabolism , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Protein Array Analysis , Protein Processing, Post-Translational/drug effects , Substrate Specificity/drug effects
20.
J Biol Chem ; 286(31): 27255-65, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21659511

ABSTRACT

Aminopeptidases catalyze N-terminal peptide bond hydrolysis and occupy many diverse roles across all domains of life. Here we present evidence that an M1-family aminopeptidase, PfA-M1, has been recruited to specialized roles in the human malaria parasite Plasmodium falciparum. PfA-M1 is abundant in two subcellular compartments in asexual intraerythrocytic parasites; that is, the food vacuole, where the catabolism of host hemoglobin takes place, and the nucleus. A unique N-terminal extension contributes to the observed dual targeting by providing a signal peptide and putative alternate translation initiation sites. PfA-M1 exists as two major isoforms, a nuclear 120-kDa species and a processed species consisting of a complex of 68- and 35-kDa fragments. PfA-M1 is both stable and active at the acidic pH of the food vacuole lumen. Determination of steady-state kinetic parameters for both aminoacyl-ß-naphthylamide and unmodified dipeptide substrates over the pH range 5.0-8.5 reveals that k(cat) is relatively insensitive to pH, whereas K(m) increases at pH values below 6.5. At the pH of the food vacuole lumen (5.0-5.5), the catalytic efficiency of PfA-M1 remains high. Consistent with the kinetic data, the affinity of peptidic competitive inhibitors is diminished at acidic pH. Together, these results support a catalytic role for PfA-M1 in the food vacuole and indicate the importance of evaluating the potency of peptidic inhibitors at physiologically relevant pH values. They also suggest a second, distinct function for this enzyme in the parasite nucleus.


Subject(s)
Aminopeptidases/metabolism , Hemoglobins/metabolism , Plasmodium falciparum/enzymology , Vacuoles/metabolism , Amino Acid Sequence , Aminopeptidases/chemistry , Aminopeptidases/isolation & purification , Animals , Base Sequence , Blotting, Western , DNA Primers , Erythrocytes/parasitology , Humans , Hydrogen-Ion Concentration , Kinetics , Molecular Sequence Data , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...