Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(6): 6052-6058, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36816637

ABSTRACT

In this work, we demonstrate, for the first time, the possibility to fabricate indium tin oxide nanoparticles (ITO NPs) using a gas aggregation cluster source. A stable and reproducible deposition rate of ITO NPs has been achieved using magnetron sputtering of an In2O3/SnO2 target (90/10 wt %) at an elevated pressure of argon. Remarkably, most of the generated NPs possess a crystalline structure identical to the original target material, which, in combination with their average size of 17 nm, resulted in a localized surface plasmon resonance peak at 1580 nm in the near-infrared region.

2.
ACS Appl Mater Interfaces ; 9(34): 29010-29020, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28708378

ABSTRACT

Noble-metal-coated carbon-based nanoparticles, when used as electrically conductive fillers, have the potential to provide excellent conductivity without the high weight and cost normally associated with metals such as silver and gold. To this effect, many attempts were made to deposit uniform metallic layers on core nanoparticles with an emphasis on silver for its high conductivity. The results so far were disheartening with the metal morphology being better described as a decoration than a coating with small effects on the electrical conductivity of the bulk particles. We tackled in this work the specific problem of electroless deposition of silver on carbon nanofibers (CNFs) with the investigation of every step of the process. We performed X-ray photoelectron spectroscopy (XPS), transmission and scanning electron microscopy (TEM, SEM), zeta potential, and electrical conductivity measurements to identify a repeatable, reliable set of parameters allowing for a uniform and fully connected silver deposition on the surface of the CNFs. The bulk particles' specific electrical conductivity (conductivity per unit mass) undergoes a more than 10-fold increase during the deposition, reaching 2500 S·cm2/g, which indicates that the added metal mass participates efficiently to the conduction network. The particles keep their high aspect ratio through the process, which enables a percolated conduction network at very low volume loadings in a composite. No byproducts are produced during the reaction so the particles do not have to be sorted or purified and can be used as produced after the short ∼15 min reaction time. The particles might be an interesting replacement to conventional fillers in isotropic conductive adhesives, as a conductive network is obtained at a much lower loading. They might also serve as electrically conductive fillers in composites where a high conductivity is needed, such as lightning strike protection systems, or as high surface area silver electrodes.

3.
ACS Appl Mater Interfaces ; 9(20): 16995-17001, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28485953

ABSTRACT

Electrochromic (EC) smart windows are able to decrease our energy footprint while enhancing indoor comfort and convenience. However, the limited durability of these windows, as well as their cost, result in hampered market introduction. Here, we investigate thin films of the most widely studied EC material, WO3. Specifically, we combine optical measurements (using spectrophotometry in conjunction with variable-angle spectroscopic ellipsometry) with time-of-flight secondary ion mass spectrometry and atomic force microscopy. Data were taken on films in their as-deposited state, after immersion in a Li-ion-conducting electrolyte, after severe degradation by harsh voltammetric cycling and after galvanostatic rejuvenation to regain the original EC performance. Unambiguous evidence was found for the trapping and detrapping of Li ions in the films, along with a thickness increase or decrease during degradation and rejuvenation, respectively. It was discovered that (i) the trapped ions exhibited a depth gradient; (ii) following the rejuvenation procedure, a small fraction of the Li ions remained trapped in the film and gave rise to a weak short-wavelength residual absorption; and (iii) the surface roughness of the film was larger in the degraded state than in its virgin and rejuvenated states. These data provide important insights into the degradation mechanisms of EC devices and into means of achieving improved durability.

4.
ACS Appl Mater Interfaces ; 7(48): 26387-90, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26599729

ABSTRACT

Ion trapping under charge insertion-extraction is well-known to degrade the electrochemical performance of oxides. Galvanostatic treatment was recently shown capable to rejuvenate the oxide, but the detailed mechanism remained uncertain. Here we report on amorphous electrochromic (EC) WO3 thin films prepared by sputtering and electrochemically cycled in a lithium-containing electrolyte under conditions leading to severe loss of charge exchange capacity and optical modulation span. Time-of-flight elastic recoil detection analysis (ToF-ERDA) documented pronounced Li(+) trapping associated with the degradation of the EC properties and, importantly, that Li(+) detrapping, caused by a weak constant current drawn through the film for some time, could recover the original EC performance. Thus, ToF-ERDA provided direct and unambiguous evidence for Li(+) detrapping.

5.
Appl Opt ; 51(27): 6498-507, 2012 Sep 20.
Article in English | MEDLINE | ID: mdl-23033019

ABSTRACT

Optical, mechanical, and thermal properties of optical thin films are very important for a reliable device performance. In the present work, the effect of annealing on the stability and the characteristics of niobium and tantalum oxide films grown at room temperature (RT) by dual ion beam sputtering were studied. The refractive index (n(λ)), extinction coefficient (k(λ)), hardness (H), reduced Young's modulus (E(r)), and film stress (σ) were investigated as a function of the annealing temperature (T(A)). X-ray diffraction analysis showed that all as-deposited films were amorphous, and crystallization was observed only after annealing at 700°C. Compositional analyses confirmed that the atomic ratio of oxygen to metal in as-deposited and annealed films was close to 2.5, indicating that the films were stoichiometric pentoxides of Nb and Ta. The properties of Nb(2)O(5) and Ta(2)O(5) films were, respectively, affected by postdeposition annealing: n(λ) values (at 550 nm) decreased from 2.30 to 2.20 and from 2.14 to 2.08, the average H and E(r) values increased from 5.6 to 7.4 GPa, and from 121 to 132 GPa for Nb(2)O(5), and from 6.5 to 8.3 GPa, and from 132 to 144 GPa for Ta(2)O(5), and the initial low compressive stress for both materials changed to tensile. We explain the variation of the coating material properties in terms of film stoichiometry, crystallinity, electronic structure, and possible reactions at the film-substrate interface.

6.
Appl Opt ; 50(19): 3351-9, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21743540

ABSTRACT

Optical security devices applied to banknotes and other documents are exposed to different types of harsh environments involving the cycling of temperature, humidity, chemical agents, and tribomechanical intrusion. In the present work, we study the stability of optically variable devices, namely metameric interference filters, prepared by dual ion beam sputtering onto polycarbonate and glass substrates. Specifically, we assess the color difference as well as the changes in the mechanical properties and integrity of all-dielectric and metal-dielectric systems due to exposure to bleach, detergent and acetone agents, and heat and humidity. The results underline a significant role of the substrate material, of the interfaces, and of the nature and microstructure of the deposited films in long term stability under everyday application conditions.

7.
Appl Opt ; 48(23): 4536-44, 2009 Aug 10.
Article in English | MEDLINE | ID: mdl-19668268

ABSTRACT

Mechanical and thermoelastic properties of optical films are very important to ensure the performance of optical interference filters and optical coating systems. We systematically study the growth and the mechanical and thermoelastic characteristics of niobium oxide (Nb(2)O(5)), tantalum oxide (Ta(2)O(5)), and silicon dioxide (SiO(2)) thin films prepared by dual ion beam sputtering. First, we investigate the stress (sigma), hardness (H), reduced Young's modulus (E(r)), and scratch resistance. Second, we focus on the methodology and assessment of the coefficient of thermal expansion (CTE) and Poisson's ratio (nu) using the two-substrate method. For the high refractive index films, namely, Nb(2)O(5) (n at 550 nm=2.30) and Ta(2)O(5) (n at 550 nm=2.13), we obtained H approximately 6 GPa, E(r) approximately 125 GPa, CTE=4.9x10(-6) degrees C(-1), nu=0.22, and H approximately 7 GPa, E(r) approximately 133 GPa, CTE=4.4x10(-6) degrees C(-1), and nu=0.27, respectively. In comparison, for SiO(2) (n at 550 nm=1.48), these values are H approximately 9.5 GPa, E(r) approximately 87 GPa, CTE=2.1x10(-6) degrees C(-1), and nu=0.11. Correlations between the growth conditions (secondary beam ion energy and ion current), the microstructure, and the film properties are discussed.

8.
J Mater Sci Mater Med ; 20(3): 681-9, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18949537

ABSTRACT

A series of the solid emulsion gels with the oil volume fraction in the range of 0-50% were synthesized through a polycondensation reaction between activated p-nitrophenyl carbonate poly(ethylene glycol) and protein-stabilized oil-in-water emulsions. The resultant structures were investigated in terms of swelling behavior, composition, morphology, mechanical and skin hydration properties. Solid emulsions gels share the properties of both hydrogel and emulsion. Similar to the classical hydrogel, the SEG swells in water up to equilibrium swelling degree, which decreases as the oil volume fraction increases, and comprises immobilized drops of protein-stabilized oil. The impregnation of the oil phase is found to reduce tensile stiffness of the material, but improves material's extensibility. The mechanical properties of the constructs (Young moduli in the range of 9-15 kPa and the elongation at break of 120-220%) are interpreted according to the "rule of elasticity mixture" that considers the elasticity of the composite material to be a sum of the contributions from individual components, i.e. hydrogel and dispersed oil drops. An idealized model that takes into account the history of the material preparation has been proposed to explain the improved extensibility of the constructs. The results of the mechanical tests, equilibrium swelling, and the skin hydration effect of the solid emulsion gels in vivo are discussed from the perspective of the biomedical applications of the solid emulsion gels, in particular, for the transdermal delivery of hydrophilic and lipophilic drugs.


Subject(s)
Biocompatible Materials/chemical synthesis , Dermatologic Agents/administration & dosage , Administration, Topical , Biocompatible Materials/chemistry , Biomechanical Phenomena , Desiccation , Emulsions , Female , Gels , Humans , Hydrogels , Male , Materials Testing , Microscopy, Electron, Scanning , Models, Molecular , Oils , Polyethylene Glycols/chemistry , Solubility , Surface Properties , Tensile Strength
9.
J Biomed Mater Res A ; 83(1): 88-97, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17380500

ABSTRACT

Biomimetic hydrogel made of poly(ethylene glycol) and soy protein with a water content of 96% has been developed for moist wound dressing applications. In this study, such hybrid hydrogels were investigated by both tensile and unconfined compression measurements in order to understand the relationships between structural parameters of the network, its mechanical properties and protein absorption in vitro. Elastic moduli were found to vary from 1 to 17 kPa depending on the composition, while the Poisson's ratio (approximately 0.18) and deformation at break (approximately 300%) showed no dependence on this parameter. Further calculations yielded the crosslinking concentration, the average molecular weight between crosslinks (M(C)) and the mesh size. The results show that reactions between PEG and protein create polymeric chains comprising molecules of PEG and protein fragments between crosslinks. M(C) is three times higher than that expected for a "theoretical network." On the basis of this data, we propose a model for the 3D network of the hydrogel, which is found to be useful for understanding drug release properties and biomedical potential of the studied material.


Subject(s)
Bandages, Hydrocolloid , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Soybean Proteins/chemistry , Animals , Aprotinin/isolation & purification , Cattle , Elasticity , Electrophoresis, Polyacrylamide Gel , Serum Albumin, Bovine/isolation & purification
10.
Appl Opt ; 43(13): 2670-9, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15130006

ABSTRACT

Good performance of optical coatings depends on the appropriate combination of optical and mechanical properties. Therefore, successful applications require good understanding of the relationship between optical microstructural and mechanical characteristics and film stability. In addition, there is a lack of standard mechanical tests that allow one to compare film properties measured in different laboratories. We give an overview of the methodology of mechanical measurements suitable for optical coatings; this includes depth-sensing indentation, scratch resistance, friction, abrasion and wear testing, and stress and adhesion evaluation. We used the techniques mentioned above in the same laboratory to systematically compare the mechanical behavior of frequently used high- and low-index materials, namely, TiO2, Ta2O5, and SiO2, prepared by different complementary techniques. They include ion-beam-assisted deposition by electron-beam evaporation, magnetron sputtering, dual-ion-beam sputtering, plasma-enhanced chemical-vapor deposition, and filtered cathodic arc deposition. The mechanical properties are correlated with the film microstructure that is inherently related to energetic conditions during film growth.

11.
Appl Opt ; 43(1): 97-103, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14714649

ABSTRACT

Transparent hydrogenated amorphous silicon nitride (SiNx:H) coatings were prepared by dual-mode microwave-radio-frequency plasma-enhanced chemical vapor deposition. By controlling the effects of plasma density and ion energy on the film growth, it was possible to modify the microstructure of the coatings and hence the refractive index n. Using this method, we were able to vary n from 1.6 to 2.0, at 550 nm, by adjusting the power levels of the radio-frequency and microwave components while keeping the gas composition (SiH4, N2) and pressure constant. An inhomogeneous bandpass filter with a controlled refractive-index depth profile was fabricated, and its optical performance was compared with that of its multilayer counterpart. Besides the attractive optical features of such single-material rugate filters, we found that the mechanical resistance of inhomogeneous films is superior to that of multilayer systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...