Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(20): 16995-17001, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28485953

ABSTRACT

Electrochromic (EC) smart windows are able to decrease our energy footprint while enhancing indoor comfort and convenience. However, the limited durability of these windows, as well as their cost, result in hampered market introduction. Here, we investigate thin films of the most widely studied EC material, WO3. Specifically, we combine optical measurements (using spectrophotometry in conjunction with variable-angle spectroscopic ellipsometry) with time-of-flight secondary ion mass spectrometry and atomic force microscopy. Data were taken on films in their as-deposited state, after immersion in a Li-ion-conducting electrolyte, after severe degradation by harsh voltammetric cycling and after galvanostatic rejuvenation to regain the original EC performance. Unambiguous evidence was found for the trapping and detrapping of Li ions in the films, along with a thickness increase or decrease during degradation and rejuvenation, respectively. It was discovered that (i) the trapped ions exhibited a depth gradient; (ii) following the rejuvenation procedure, a small fraction of the Li ions remained trapped in the film and gave rise to a weak short-wavelength residual absorption; and (iii) the surface roughness of the film was larger in the degraded state than in its virgin and rejuvenated states. These data provide important insights into the degradation mechanisms of EC devices and into means of achieving improved durability.

2.
ACS Appl Mater Interfaces ; 7(48): 26387-90, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26599729

ABSTRACT

Ion trapping under charge insertion-extraction is well-known to degrade the electrochemical performance of oxides. Galvanostatic treatment was recently shown capable to rejuvenate the oxide, but the detailed mechanism remained uncertain. Here we report on amorphous electrochromic (EC) WO3 thin films prepared by sputtering and electrochemically cycled in a lithium-containing electrolyte under conditions leading to severe loss of charge exchange capacity and optical modulation span. Time-of-flight elastic recoil detection analysis (ToF-ERDA) documented pronounced Li(+) trapping associated with the degradation of the EC properties and, importantly, that Li(+) detrapping, caused by a weak constant current drawn through the film for some time, could recover the original EC performance. Thus, ToF-ERDA provided direct and unambiguous evidence for Li(+) detrapping.

3.
Appl Opt ; 48(23): 4536-44, 2009 Aug 10.
Article in English | MEDLINE | ID: mdl-19668268

ABSTRACT

Mechanical and thermoelastic properties of optical films are very important to ensure the performance of optical interference filters and optical coating systems. We systematically study the growth and the mechanical and thermoelastic characteristics of niobium oxide (Nb(2)O(5)), tantalum oxide (Ta(2)O(5)), and silicon dioxide (SiO(2)) thin films prepared by dual ion beam sputtering. First, we investigate the stress (sigma), hardness (H), reduced Young's modulus (E(r)), and scratch resistance. Second, we focus on the methodology and assessment of the coefficient of thermal expansion (CTE) and Poisson's ratio (nu) using the two-substrate method. For the high refractive index films, namely, Nb(2)O(5) (n at 550 nm=2.30) and Ta(2)O(5) (n at 550 nm=2.13), we obtained H approximately 6 GPa, E(r) approximately 125 GPa, CTE=4.9x10(-6) degrees C(-1), nu=0.22, and H approximately 7 GPa, E(r) approximately 133 GPa, CTE=4.4x10(-6) degrees C(-1), and nu=0.27, respectively. In comparison, for SiO(2) (n at 550 nm=1.48), these values are H approximately 9.5 GPa, E(r) approximately 87 GPa, CTE=2.1x10(-6) degrees C(-1), and nu=0.11. Correlations between the growth conditions (secondary beam ion energy and ion current), the microstructure, and the film properties are discussed.

4.
J Mater Sci Mater Med ; 20(3): 681-9, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18949537

ABSTRACT

A series of the solid emulsion gels with the oil volume fraction in the range of 0-50% were synthesized through a polycondensation reaction between activated p-nitrophenyl carbonate poly(ethylene glycol) and protein-stabilized oil-in-water emulsions. The resultant structures were investigated in terms of swelling behavior, composition, morphology, mechanical and skin hydration properties. Solid emulsions gels share the properties of both hydrogel and emulsion. Similar to the classical hydrogel, the SEG swells in water up to equilibrium swelling degree, which decreases as the oil volume fraction increases, and comprises immobilized drops of protein-stabilized oil. The impregnation of the oil phase is found to reduce tensile stiffness of the material, but improves material's extensibility. The mechanical properties of the constructs (Young moduli in the range of 9-15 kPa and the elongation at break of 120-220%) are interpreted according to the "rule of elasticity mixture" that considers the elasticity of the composite material to be a sum of the contributions from individual components, i.e. hydrogel and dispersed oil drops. An idealized model that takes into account the history of the material preparation has been proposed to explain the improved extensibility of the constructs. The results of the mechanical tests, equilibrium swelling, and the skin hydration effect of the solid emulsion gels in vivo are discussed from the perspective of the biomedical applications of the solid emulsion gels, in particular, for the transdermal delivery of hydrophilic and lipophilic drugs.


Subject(s)
Biocompatible Materials/chemical synthesis , Dermatologic Agents/administration & dosage , Administration, Topical , Biocompatible Materials/chemistry , Biomechanical Phenomena , Desiccation , Emulsions , Female , Gels , Humans , Hydrogels , Male , Materials Testing , Microscopy, Electron, Scanning , Models, Molecular , Oils , Polyethylene Glycols/chemistry , Solubility , Surface Properties , Tensile Strength
5.
J Biomed Mater Res A ; 83(1): 88-97, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17380500

ABSTRACT

Biomimetic hydrogel made of poly(ethylene glycol) and soy protein with a water content of 96% has been developed for moist wound dressing applications. In this study, such hybrid hydrogels were investigated by both tensile and unconfined compression measurements in order to understand the relationships between structural parameters of the network, its mechanical properties and protein absorption in vitro. Elastic moduli were found to vary from 1 to 17 kPa depending on the composition, while the Poisson's ratio (approximately 0.18) and deformation at break (approximately 300%) showed no dependence on this parameter. Further calculations yielded the crosslinking concentration, the average molecular weight between crosslinks (M(C)) and the mesh size. The results show that reactions between PEG and protein create polymeric chains comprising molecules of PEG and protein fragments between crosslinks. M(C) is three times higher than that expected for a "theoretical network." On the basis of this data, we propose a model for the 3D network of the hydrogel, which is found to be useful for understanding drug release properties and biomedical potential of the studied material.


Subject(s)
Bandages, Hydrocolloid , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Soybean Proteins/chemistry , Animals , Aprotinin/isolation & purification , Cattle , Elasticity , Electrophoresis, Polyacrylamide Gel , Serum Albumin, Bovine/isolation & purification
6.
Appl Opt ; 43(13): 2670-9, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15130006

ABSTRACT

Good performance of optical coatings depends on the appropriate combination of optical and mechanical properties. Therefore, successful applications require good understanding of the relationship between optical microstructural and mechanical characteristics and film stability. In addition, there is a lack of standard mechanical tests that allow one to compare film properties measured in different laboratories. We give an overview of the methodology of mechanical measurements suitable for optical coatings; this includes depth-sensing indentation, scratch resistance, friction, abrasion and wear testing, and stress and adhesion evaluation. We used the techniques mentioned above in the same laboratory to systematically compare the mechanical behavior of frequently used high- and low-index materials, namely, TiO2, Ta2O5, and SiO2, prepared by different complementary techniques. They include ion-beam-assisted deposition by electron-beam evaporation, magnetron sputtering, dual-ion-beam sputtering, plasma-enhanced chemical-vapor deposition, and filtered cathodic arc deposition. The mechanical properties are correlated with the film microstructure that is inherently related to energetic conditions during film growth.

7.
Appl Opt ; 43(1): 97-103, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14714649

ABSTRACT

Transparent hydrogenated amorphous silicon nitride (SiNx:H) coatings were prepared by dual-mode microwave-radio-frequency plasma-enhanced chemical vapor deposition. By controlling the effects of plasma density and ion energy on the film growth, it was possible to modify the microstructure of the coatings and hence the refractive index n. Using this method, we were able to vary n from 1.6 to 2.0, at 550 nm, by adjusting the power levels of the radio-frequency and microwave components while keeping the gas composition (SiH4, N2) and pressure constant. An inhomogeneous bandpass filter with a controlled refractive-index depth profile was fabricated, and its optical performance was compared with that of its multilayer counterpart. Besides the attractive optical features of such single-material rugate filters, we found that the mechanical resistance of inhomogeneous films is superior to that of multilayer systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...