Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 24(1): 101909, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33392479

ABSTRACT

Mammalian central synapses exhibit vast heterogeneity in signaling strength. To understand the extent of this diversity, how it is achieved, and its functional implications, characterization of a large number of individual synapses is required. Using glutamate imaging, we characterized the evoked release probability and spontaneous release frequency of over 24,000 individual synapses. We found striking variability and no correlation between action potential-evoked and spontaneous synaptic release strength, suggesting distinct regulatory mechanisms. Subpixel localization of individual evoked and spontaneous release events reveals tight spatial regulation of evoked release and enhanced spontaneous release outside of evoked release region. Using on-stage post hoc immune-labeling of vesicle-associated proteins, Ca2+-sensing proteins, and soluble presynaptic proteins we were able to show that distinct molecular ensembles are associated with evoked and spontaneous modes of synaptic release.

2.
J Clin Invest ; 124(2): 675-86, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24401273

ABSTRACT

High blood pressure is the leading risk factor for death worldwide. One of the hallmarks is a rise of peripheral vascular resistance, which largely depends on arteriole tone. Ca2+-activated chloride currents (CaCCs) in vascular smooth muscle cells (VSMCs) are candidates for increasing vascular contractility. We analyzed the vascular tree and identified substantial CaCCs in VSMCs of the aorta and carotid arteries. CaCCs were small or absent in VSMCs of medium-sized vessels such as mesenteric arteries and larger retinal arterioles. In small vessels of the retina, brain, and skeletal muscle, where contractile intermediate cells or pericytes gradually replace VSMCs, CaCCs were particularly large. Targeted disruption of the calcium-activated chloride channel TMEM16A, also known as ANO1, in VSMCs, intermediate cells, and pericytes eliminated CaCCs in all vessels studied. Mice lacking vascular TMEM16A had lower systemic blood pressure and a decreased hypertensive response following vasoconstrictor treatment. There was no difference in contractility of medium-sized mesenteric arteries; however, responsiveness of the aorta and small retinal arterioles to the vasoconstriction-inducing drug U46619 was reduced. TMEM16A also was required for peripheral blood vessel contractility, as the response to U46619 was attenuated in isolated perfused hind limbs from mutant mice. Out data suggest that TMEM16A plays a general role in arteriolar and capillary blood flow and is a promising target for the treatment of hypertension.


Subject(s)
Blood Pressure/drug effects , Chloride Channels/metabolism , Hypertension/physiopathology , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Animals , Anoctamin-1 , Arterioles/pathology , Blood Pressure/physiology , Brain/metabolism , Cloning, Molecular , DNA, Complementary/metabolism , Electrophysiology , Estrogen Antagonists/pharmacology , HEK293 Cells , Humans , Hypertension/drug therapy , Membrane Potentials/drug effects , Mesenteric Arteries/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/cytology , Neoplasm Proteins/metabolism , Pericytes/metabolism , Retina/metabolism , Tamoxifen/pharmacology , Time Factors , Vascular Resistance , Vasoconstrictor Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...