Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(12): e2113877119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35302884

ABSTRACT

During continent­continent collision, does the downgoing continental plate underplate far inboard of the collisional boundary or does it subduct steeply into the mantle, and how is this geometry manifested in the mantle flow field? We test conflicting models for these questions for Earth's archetypal continental collision forming the Himalaya and Tibetan Plateau. Air-corrected helium isotope data (3He/4He) from 225 geothermal springs (196 from our group, 29 from the literature) delineate a boundary separating a Himalayan domain of only crustal helium from a Tibetan domain with significant mantle helium. This 1,000-km-long boundary is located close to the Yarlung-Zangbo Suture (YZS) in southern Tibet from 80 to 92°E and is interpreted to overlie the "mantle suture" where cold underplated Indian lithosphere is juxtaposed at >80 km depth against a sub-Tibetan incipiently molten asthenospheric mantle wedge. In southeastern Tibet, the mantle suture lies 100 km south of the YZS, implying delamination of the mantle lithosphere from the Indian crust. This helium-isotopic boundary helps resolve multiple, mutually conflicting seismological interpretations. Our synthesis of the combined data locates the northern limit of Indian underplating beneath Tibet, where the Indian plate bends to steeper dips or breaks off beneath a (likely thin) asthenospheric wedge below Tibetan crust, thereby defining limited underthrusting for the Tibetan continental collision.

2.
Proc Natl Acad Sci U S A ; 117(40): 24742-24747, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-32958679

ABSTRACT

The deep structure of the continental collision between India and Asia and whether India's lower crust is underplated beneath Tibet or subducted into the mantle remain controversial. It is also unknown whether the active normal faults that facilitate orogen-parallel extension of Tibetan upper crust continue into the lower crust and upper mantle. Our receiver-function images collected parallel to the India-Tibet collision zone show the 20-km-thick Indian lower crust that underplates Tibet at 88.5-92°E beneath the Yarlung-Zangbo suture is essentially absent in the vicinity of the Cona-Sangri and Pumqu-Xainza grabens, demonstrating a clear link between upper-crustal and lower-crustal thinning. Satellite gravity data that covary with the thickness of Indian lower crust are consistent with the lower crust being only ∼30% eclogitized so gravitationally stable. Deep earthquakes coincide with Moho offsets and with lateral thinning of the Indian lower crust near the bottom of the partially eclogitized Indian lower crust, suggesting the Indian lower crust is locally foundering or stoping into the mantle. Loss of Indian lower crust by these means implies gravitational instability that can result from localized rapid eclogitization enabled by dehydration reactions in weakly hydrous mafic granulites or by volatile-rich asthenospheric upwelling directly beneath the two grabens. We propose that two competing processes, plateau formation by underplating and continental loss by foundering or stoping, are simultaneously operating beneath the collision zone.

3.
Sci Adv ; 5(6): eaav0723, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31249863

ABSTRACT

The Himalaya orogenic belt produces frequent large earthquakes that affect population centers along a length of over 2500 km. The 2015 Gorkha, Nepal earthquake (M w 7.8) ruptured the Main Himalayan Thrust (MHT) and allows direct measurements of the behavior of the continental collision zone. We study the MHT using seismic waveforms recorded by local stations that completely cover the aftershock zone. The MHT exhibits clear lateral variation along geologic strike, with the Lesser Himalayan ramp having moderate dip on the MHT beneath the mainshock area and a flatter and deeper MHT beneath the eastern end of the aftershock zone. East of the aftershock zone, seismic wave speed increases at MHT depths, perhaps due to subduction of an Indian basement ridge. A similar magnitude wave speed change occurs at the western end of the aftershock zone. These gross morphological structures of the MHT controlled the rupture length of the Gorkha earthquake.

4.
Earth Planets Space ; 70(1): 57, 2018.
Article in English | MEDLINE | ID: mdl-31258377

ABSTRACT

When working with ultra-low-frequency (ULF) magnetic datasets, as with most geophysical time-series data, it is important to be able to distinguish between cultural signals, internal instrument noise, and natural external signals with their induced telluric fields. This distinction is commonly attempted using simultaneously recorded data from a spatially remote reference site. Here, instead, we compared data recorded by two systems with different instrumental characteristics at the same location over the same time period. We collocated two independent ULF magnetic systems, one from the QuakeFinder network and the other from the United States Geological Survey (USGS)-Stanford network, in order to cross-compare their data, characterize data reproducibility, and characterize signal origin. In addition, we used simultaneous measurements at a remote geomagnetic observatory to distinguish global atmospheric signals from local cultural signals. We demonstrated that the QuakeFinder and USGS-Stanford systems have excellent coherence, despite their different sensors and digitizers. Rare instances of isolated signals recorded by only one system or only one sensor indicate that caution is needed when attributing specific recorded signal features to specific origins.

5.
Sci Rep ; 7(1): 12497, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28970535

ABSTRACT

Himalayan tectonic activity is triggered by downward penetration of the Indian plate beneath the Asian plate. The subsurface geometry of this interaction has not been fully investigated. This study presents novel constraints on this geometry provided by two newly obtained, deep seismic reflection profiles. The profiles cover 100- and 60-km transects across the Yarlung-Zangbo suture of the Himalaya-Tibet orogen at c. 88°E. Both profiles show a crustal-scale outline of the subducting Indian crust. This outline clearly shows Indian understhrusting southern Tibet, but only to a limited degree. When combined with a third seismic reflection profile of the western Himalayas, the new profiles reveal progressive, eastward steepening and shortening in the horizontal advance of the subducting Indian crust.

SELECTION OF CITATIONS
SEARCH DETAIL
...