Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Front Immunol ; 13: 995412, 2022.
Article in English | MEDLINE | ID: mdl-36172366

ABSTRACT

Anti-COVID antibody therapeutics have been developed but not widely used due to their high cost and escape of neutralization from the emerging variants. Here, we describe the development of VHH-IgA1.1, a nanobody IgA fusion molecule as an inhalable, affordable and less invasive prophylactic and therapeutic treatment against SARS-CoV-2 Omicron variants. VHH-IgA1.1 recognizes a conserved epitope of SARS-CoV-2 spike protein Receptor Binding Domain (RBD) and potently neutralizes major global SARS-CoV-2 variants of concern (VOC) including the Omicron variant and its sub lineages BA.1.1, BA.2 and BA.2.12.1. VHH-IgA1.1 is also much more potent against Omicron variants as compared to an IgG Fc fusion construct, demonstrating the importance of IgA mediated mucosal protection for Omicron infection. Intranasal administration of VHH-IgA1.1 prior to or after challenge conferred significant protection from severe respiratory disease in K18-ACE2 transgenic mice infected with SARS-CoV-2 VOC. More importantly, for cost-effective production, VHH-IgA1.1 produced in Pichia pastoris had comparable potency to mammalian produced antibodies. Our study demonstrates that intranasal administration of affordably produced VHH-IgA fusion protein provides effective mucosal immunity against infection of SARS-CoV-2 including emerging variants.


Subject(s)
COVID-19 , Immunoglobulin A , SARS-CoV-2 , Single-Domain Antibodies , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral/pharmacology , Epitopes/chemistry , Humans , Immunoglobulin A/pharmacology , Immunoglobulin G , Mice , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus
2.
J Clin Invest ; 131(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-33914704

ABSTRACT

Disrupting transmission of Borrelia burgdorferi sensu lato complex (B. burgdorferi) from infected ticks to humans is one strategy to prevent the significant morbidity from Lyme disease. We have previously shown that an anti-OspA human mAb, 2217, prevents transmission of B. burgdorferi from infected ticks in animal models. Maintenance of a protective plasma concentration of a human mAb for tick season presents a significant challenge for a preexposure prophylaxis strategy. Here, we describe the optimization of mAb 2217 by amino acid substitutions (2217LS: M428L and N434S) in the Fc domain. The LS mutation led to a 2-fold increase in half-life in cynomolgus monkeys. In a rhesus macaque model, 2217LS protected animals from tick transmission of spirochetes at a dose of 3 mg/kg. Crystallographic analysis of Fab in complex with OspA revealed that 2217 bound an epitope that was highly conserved among the B. burgdorferi, B. garinii, and B. afzelii species. Unlike most vaccines that may require boosters to achieve protection, our work supports the development of 2217LS as an effective preexposure prophylaxis in Lyme-endemic regions, with a single dose at the beginning of tick season offering immediate protection that remains for the duration of exposure risk.


Subject(s)
Antibodies, Bacterial , Antibodies, Monoclonal/pharmacology , Borrelia burgdorferi , Lyme Disease , Amino Acid Substitution , Animals , Antibodies, Bacterial/genetics , Antibodies, Bacterial/immunology , Antibodies, Bacterial/pharmacology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antigens, Surface/genetics , Antigens, Surface/immunology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/genetics , Bacterial Vaccines/immunology , Borrelia burgdorferi/genetics , Borrelia burgdorferi/immunology , Disease Models, Animal , Humans , Lipoproteins/genetics , Lipoproteins/immunology , Lyme Disease/drug therapy , Lyme Disease/genetics , Lyme Disease/immunology , Lyme Disease/transmission , Macaca fascicularis , Macaca mulatta , Male , Mice , Mice, Transgenic , Mutation, Missense , Ticks/immunology , Ticks/microbiology
3.
Sci Rep ; 11(1): 2751, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531570

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is estimated to cause approximately 380,000 deaths annually during sporadic or epidemic outbreaks worldwide. Development of vaccines against ETEC is very challenging due to the vast heterogeneity of the ETEC strains. An effective vaccines would have to be multicomponent to provide coverage of over ten ETEC strains with genetic variabilities. There is currently no vaccine licensed to prevent ETEC. Nanobodies are successful new biologics in treating mucosal infectious disease as they recognize conserved epitopes on hypervariable pathogens. Cocktails consisting of multiple nanobodies could provide even broader epitope coverage at a lower cost compared to monoclonal antibodies. Identification of conserved epitopes by nanobodies can also assist reverse engineering of an effective vaccine against ETEC. By screening nanobodies from immunized llamas and a naïve yeast display library against adhesins of colonization factors, we identified single nanobodies that show cross-protective potency against eleven major pathogenic ETEC strains in vitro. Oral administration of nanobodies led to a significant reduction of bacterial colonization in animals. Moreover, nanobody-IgA fusion showed extended inhibitory activity in mouse colonization compared to commercial hyperimmune bovine colostrum product used for prevention of ETEC-induced diarrhea. Structural analysis revealed that nanobodies recognized a highly-conserved epitope within the putative receptor binding region of ETEC adhesins. Our findings support further rational design of a pan-ETEC vaccine to elicit robust immune responses targeting this conserved epitope.


Subject(s)
Diarrhea/prevention & control , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/prevention & control , Escherichia coli Vaccines/administration & dosage , Single-Domain Antibodies/administration & dosage , Animals , Antibodies, Bacterial/administration & dosage , Antibodies, Bacterial/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Caco-2 Cells , Camelids, New World , Cross Protection , Diarrhea/immunology , Diarrhea/microbiology , Disease Models, Animal , Drug Design , Epitope Mapping , Epitopes/immunology , Escherichia coli Infections/immunology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/immunology , Escherichia coli Vaccines/immunology , Fimbriae Proteins/antagonists & inhibitors , Fimbriae Proteins/immunology , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/immunology , Male , Mice , Single-Domain Antibodies/immunology
4.
Monoclon Antib Immunodiagn Immunother ; 39(6): 228-232, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33121367

ABSTRACT

Immunoglobulin A (IgA) antibodies are critical to mucosal protection, specifically dimeric IgA (dIgA) and secretory IgA (sIgA), which rely on the J chain to polymerize. There is an absence of monoclonal antibodies that can specifically bind to polymeric IgA without the need to denature the molecule. We generated a panel of highly specific mouse anti-J chain antibodies that react with both intact and denatured nonhuman primate dIgA and human dIgA and sIgA of both the IgA1 and IgA2 subclass. We expanded use of this antibody for quantification of dIgA and sIgA using biolayer interferometry or enzyme-linked immunosorbent assay and use for affinity chromatography. This is a significant improvement over available anti-IgA antibodies in the field, which will allow for expanded use in clinical testing.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Immunoglobulin A, Secretory/immunology , Immunoglobulin A/immunology , Animals , Chromatography, Affinity , Enzyme-Linked Immunosorbent Assay , Humans , Mice , Protein Multimerization/immunology
5.
Vaccine ; 38(47): 7490-7497, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33041102

ABSTRACT

Mucosal surfaces of the gastrointestinal tract play an important role in immune homeostasis and defense and may be compromised by enteric disorders or infection. Therapeutic intervention using monoclonal antibody (mAb) offers the potential for treatment with minimal off-target effects as well as the possibility of limited systemic exposure when administered orally. Critically, to achieve efficacy at luminal surfaces, mAb must remain stable and functionally active in the gastrointestinal environment. To better understand the impact of isotype, class, and molecular structure on the intestinal stability of recombinant antibodies, we used an in vitro simulated intestinal fluid (SIF) assay to evaluate a panel of antibody candidates for enteric mAb-based therapeutics. Recombinant IgG1 was the least stable following SIF incubation, while the stability of IgA generally increased upon polymerization, with subtle differences between subclasses. Notably, patterns of variability within and between mAbs suggest that variable regions contribute to mAb stability and potentially mediate mAb susceptibility to proteases. Despite relatively rapid degradation in SIF, mAbs targeting Enterotoxigenic Escherichia coli (ETEC) displayed functional activity following SIF treatment, with SIgA1 showing improved function compared to SIgA2. The results of this study have implications for the design of enteric therapeutics and subsequent selection of lead candidates based upon in vitro intestinal stability assessments.


Subject(s)
Antibodies, Monoclonal , Enterotoxigenic Escherichia coli , Gastrointestinal Tract , Immunoglobulin A , Immunoglobulin G
6.
Nat Commun ; 11(1): 4198, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32826914

ABSTRACT

COVID-19 caused by SARS-CoV-2 has become a global pandemic requiring the development of interventions for the prevention or treatment to curtail mortality and morbidity. No vaccine to boost mucosal immunity, or as a therapeutic, has yet been developed to SARS-CoV-2. In this study, we discover and characterize a cross-reactive human IgA monoclonal antibody, MAb362. MAb362 binds to both SARS-CoV and SARS-CoV-2 spike proteins and competitively blocks ACE2 receptor binding, by overlapping the ACE2 structural binding epitope. Furthermore, MAb362 IgA neutralizes both pseudotyped SARS-CoV and SARS-CoV-2 in 293 cells expressing ACE2. When converted to secretory IgA, MAb326 also neutralizes authentic SARS-CoV-2 virus while the IgG isotype shows no neutralization. Our results suggest that SARS-CoV-2 specific IgA antibodies, such as MAb362, may provide effective immunity against SARS-CoV-2 by inducing mucosal immunity within the respiratory system, a potentially critical feature of an effective vaccine.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , Immunoglobulin A/immunology , Peptidyl-Dipeptidase A/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Chlorocebus aethiops , Cross Reactions , Epitopes , HEK293 Cells , Humans , Immunoglobulin A/metabolism , Immunoglobulin A, Secretory/immunology , Immunoglobulin A, Secretory/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Models, Molecular , Mutation , Protein Binding , Protein Interaction Domains and Motifs , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
7.
bioRxiv ; 2020 May 15.
Article in English | MEDLINE | ID: mdl-32511396

ABSTRACT

COVID-19 caused by SARS-CoV-2 has become a global pandemic requiring the development of interventions for the prevention or treatment to curtail mortality and morbidity. No vaccine to boost mucosal immunity or as a therapeutic has yet been developed to SARS-CoV-2. In this study we discover and characterize a cross-reactive human IgA monoclonal antibody, MAb362. MAb362 binds to both SARS-CoV and SARS-CoV-2 spike proteins and competitively blocks hACE2 receptor binding, by completely overlapping the hACE2 structural binding epitope. Furthermore, MAb362 IgA neutralizes both pseudotyped SARS-CoV and SARS-CoV-2 in human epithelial cells expressing hACE2. SARS-CoV-2 specific IgA antibodies, such as MAb362, may provide effective immunity against SARS-CoV-2 by inducing mucosal immunity within the respiratory system, a potentially critical feature of an effective vaccine.

8.
Vaccine ; 38(10): 2333-2339, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32008877

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea-associated illness in developing countries. There is currently no vaccine licensed to prevent ETEC and the development of an efficacious prophylaxis would provide an intervention with significant impact. Recent studies suggested that effective protection could be achieved by inducing immunity to block colonization of ETEC. Here, we evaluated the efficacy of secretory (s) IgA2 and dimeric (d) IgA2 of an anti-colonization factor antigen antibody, 68-61, in the Aotus nancymaae nonhuman primate (NHP) ETEC challenge model via oral and parental delivery. Thirty-nine animals were distributed across 3 groups of 13, and challenged with 5.0x1011 colony forming unit (CFU) of H10407 on Day 0. Group 1 received a dIgA2 68-61 subcutaneously on day 0. Group 2 received a SIgA2 68-61 orally on days -1, 0, and +1, and Group 3 received an irrelevant SIgA2 antibody orally on days -1, 0, and +1. All animals were observed for symptoms of diarrhea, and stools were collected for ETEC colony counts. Anti-CfaE SIgA2 treatment significantly lowered the attack rate, resulting in a protective efficacy of 74.1% (p = 0.025) in Group 2 as compared to Group 3. The anti-CfaE dIgA2 treatment group had reduced diarrheal attack rate, although the reduction did not reach significance (57.1%; p = 0.072) as compared to the irrelevant SIgA2 Group 3. Our results demonstrated the feasibility of oral administration of SIgA as a potential immunoprophylaxis against enteric infections. To our knowledge, this is the first study to demonstrate the efficacy of administrated SIgA in a nonhuman primate model.


Subject(s)
Antibodies, Bacterial/administration & dosage , Diarrhea/prevention & control , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Immunoglobulin A, Secretory/administration & dosage , Administration, Oral , Animals , Aotidae , Diarrhea/microbiology , Disease Models, Animal , Escherichia coli Infections/prevention & control
9.
J Infect Dis ; 219(7): 1146-1150, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30476132

ABSTRACT

We recently developed anti-OspA human immunoglobulin G1 monoclonal antibodies (HuMAbs) that are effective in preventing Borrelia transmission from ticks in a murine model. Here, we investigated a novel approach of DNA-mediated gene transfer of HuMAbs that provide protection against Lyme disease. Plasmid DNA-encoded anti-OspA HuMAbs inoculated in mice achieved a serum antibody concentration of >6 µg/mL. Among mice injected with DNA-encoded monoclonal antibodies, 75%-77% were protected against an acute challenge by Borrelia-infected ticks. Our results represent the first demonstration of employing DNA transfer as a delivery system for antibodies that block transmission of Borrelia in animal models.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Antigens, Surface/immunology , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/immunology , DNA, Bacterial/immunology , Lipoproteins/immunology , Lyme Disease/transmission , Animals , Antibodies, Monoclonal, Humanized/genetics , Antibodies, Monoclonal, Humanized/therapeutic use , Antigens, Surface/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Vaccines/genetics , Borrelia burgdorferi , Female , HEK293 Cells , Humans , Lipoproteins/genetics , Lyme Disease/prevention & control , Mice , Mice, Inbred C3H , Mice, SCID , Plasmids/immunology , Ticks , Transfection
11.
Infect Immun ; 86(8)2018 08.
Article in English | MEDLINE | ID: mdl-29866909

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) causes diarrheal illness in infants in the developing world and travelers to countries where the disease is endemic, including military personnel. ETEC infection of the host involves colonization of the small intestinal epithelium and toxin secretion, leading to watery diarrhea. There is currently no vaccine licensed to prevent ETEC infection. CFA/I is one of the most common colonization factor antigens (CFAs). The CFA/I adhesin subunit, CfaE, is required for ETEC adhesion to host intestinal cells. Human antibodies against CfaE have the potential to block colonization of ETEC and serve as an immunoprophylactic against ETEC-related diarrhea. Mice transgenic for human immunoglobulin genes were immunized with CfaE to generate a panel of human monoclonal IgG1 antibodies (HuMAbs). The most potent IgG1 antibodies identified in the in vitro functional assays were selected and isotype switched to secretory IgA (sIgA) and tested in animal colonization assays via oral administration. Over 300 unique anti-CfaE IgG1 HuMAbs were identified. The lead IgG1 anti-CfaE HuMAbs completely inhibited hemagglutination and blocked adhesion of ETEC to Caco-2 cells. Epitope mapping studies revealed that HuMAbs recognized epitopes in the N-terminal domain of CfaE near the putative receptor binding site. Oral administration of anti-CfaE antibodies in either IgG or sIgA isotypes inhibited intestinal colonization in mice challenged with ETEC. A 2- to 4-log decrease in CFU was observed in comparison to mice challenged with irrelevant isotype controls. We identified fully human monoclonal antibodies against the CfaE adhesion domain that can be potentially employed as an immunoprophylactic to prevent ETEC-related diarrhea.


Subject(s)
Antibodies, Monoclonal/blood , Antibodies, Monoclonal/genetics , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/immunology , Escherichia coli Infections/prevention & control , Escherichia coli Vaccines/immunology , Animals , Humans , Mice
12.
J Mol Recognit ; 30(5)2017 05.
Article in English | MEDLINE | ID: mdl-27859766

ABSTRACT

The murine monoclonal antibody LA-2 recognizes a clinically protective epitope on outer surface protein (OspA) of Borrelia burgdorferi, the causative agent of Lyme disease in North America. Human antibody equivalence to LA-2 is the best serologic correlate of protective antibody responses following OspA vaccination. Understanding the structural and functional basis of the LA-2 protective epitope is important for developing OspA-based vaccines and discovering prophylactic antibodies against Lyme disease. Here, we present a detailed structure-based analysis of the LA-2/OspA interaction interface and identification of residues mediating antibody recognition. Mutations were introduced into both OspA and LA-2 on the basis of computational predictions on the crystal structure of the complex and experimentally tested for in vitro binding and borreliacidal activity. We find that Y32 and H49 on the LA-2 light chain, N52 on the LA-2 heavy chain and residues A208, N228 and N251 on OspA were the key constituents of OspA/LA-2 interface. These results reveal specific residues that may be exploited to modulate recognition of the protective epitope of OspA and have implications for developing prophylactic passive antibodies.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/metabolism , Antigens, Surface/chemistry , Bacterial Outer Membrane Proteins/chemistry , Bacterial Vaccines/chemistry , Borrelia burgdorferi/immunology , Epitopes/chemistry , Lipoproteins/chemistry , Lyme Disease/immunology , Amino Acid Motifs , Animals , Antibodies, Monoclonal, Murine-Derived/chemistry , Antibodies, Monoclonal, Murine-Derived/genetics , Antigens, Surface/genetics , Antigens, Surface/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Vaccines/genetics , Bacterial Vaccines/metabolism , Binding Sites , Borrelia burgdorferi/chemistry , Borrelia burgdorferi/genetics , Crystallography, X-Ray , Humans , Lipoproteins/genetics , Lipoproteins/metabolism , Mice , Models, Molecular , Mutation , Protein Binding , Structural Homology, Protein
13.
J Infect Dis ; 214(2): 205-11, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27338767

ABSTRACT

BACKGROUND: Tick transmission of Borrelia spirochetes to humans results in significant morbidity from Lyme disease worldwide. Serum concentrations of antibodies against outer surface protein A (OspA) were shown to correlate with protection from infection with Borrelia burgdorferi, the primary cause of Lyme disease in the United States. METHODS: Mice transgenic for human immunoglobulin genes were immunized with OspA from B. burgdorferi to generate human monoclonal antibodies (HuMabs) against OspA. HuMabs were generated and tested in in vitro borreliacidal assays and animal protection assays. RESULTS: Nearly 100 unique OspA-specific HuMabs were generated, and 4 HuMabs (221-7, 857-2, 319-44, and 212-55) were selected as lead candidates on the basis of borreliacidal activity. HuMabs 319-44, 857-2, and 212-55 were borreliacidal against 1 or 2 Borrelia genospecies, whereas 221-7 was borreliacidal (half maximal inhibitory concentration, < 1 nM) against B. burgdorferi, Borrelia afzelii, and Borrelia garinii, the 3 main genospecies endemic in the United States, Europe, and Asia. All 4 HuMabs completely protected mice from infection at 10 mg/kg in a murine model of tick-mediated transmission of B. burgdorferi CONCLUSIONS: Our study indicates that OspA-specific HuMabs can prevent the transmission of Borrelia and that administration of these antibodies could be employed as preexposure prophylaxis for Lyme disease.


Subject(s)
Antibodies, Bacterial/administration & dosage , Antibodies, Monoclonal/administration & dosage , Bacterial Outer Membrane Proteins/antagonists & inhibitors , Bacterial Vaccines/antagonists & inhibitors , Disease Transmission, Infectious/prevention & control , Immunologic Factors/administration & dosage , Lipoproteins/antagonists & inhibitors , Lyme Disease/prevention & control , Pre-Exposure Prophylaxis/methods , Animals , Antibodies, Bacterial/isolation & purification , Antibodies, Monoclonal/isolation & purification , Antigens, Surface , Disease Models, Animal , Immunization, Passive/methods , Immunologic Factors/isolation & purification , Lyme Disease/transmission , Mice, Inbred C3H , Mice, Transgenic , Tick Bites/complications , Treatment Outcome
14.
Clin Infect Dis ; 61(11): 1703-6, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26219695

ABSTRACT

Endothelial cell growth factor has been recently proposed as a potential autoantigen in manifestations of Lyme disease that are thought to involve immune-mediated mechanisms. Our findings indicate that a humoral immune response to this protein is not associated with posttreatment Lyme disease syndrome.


Subject(s)
Autoantibodies/blood , Lyme Disease/immunology , Adult , Aged , Antibodies, Bacterial/blood , Autoantigens/immunology , Borrelia burgdorferi Group/immunology , Female , Humans , Immunity, Humoral , Immunoglobulin G/blood , Lyme Disease/drug therapy , Lyme Disease/microbiology , Lyme Disease/physiopathology , Male , Middle Aged , Syndrome
15.
MAbs ; 7(5): 912-21, 2015.
Article in English | MEDLINE | ID: mdl-26018774

ABSTRACT

Immunoglobulin G (IgG) has an unusually long serum half-life in comparison to proteins of a similar size. It is well-known that this phenomenon is due to IgG's ability to bind the neonatal Fc receptor (FcRn) in a pH-dependent manner. FcRn binding properties can vary among IgGs, resulting in altered in vivo half-lives, and therefore it would be beneficial to accurately predict the FcRn binding properties of therapeutic IgG monoclonal antibodies (mAbs). Here we describe the development of an in vitro model capable of predicting the in vivo half-life of human IgG. Using a high-throughput biolayer interferometry (BLI) platform, the human FcRn association rate at acidic pH and subsequent dissociation rate at physiological pH was determined for 5 human IgG1 mAbs. Comparing the combined FcRn association and dissociation rates to the Phase 1 clinical study half-lives of the mAbs resulted in a strong correlation. The correlation was also verified in vivo using mice transgenic for human FcRn. The model was used to characterize various factors that may influence FcRn-mAb binding, including mAb variable region sequence differences and constant region glycosylation patterns. Results indicated that the complementarity-determining regions of the heavy chain significantly influence the mAb's FcRn binding properties, while the absence of glycosylation does not alter mAb-FcRn binding. Development of this high-throughput FcRn binding model could potentially predict the half-life of therapeutic IgGs and aid in selection of lead candidates while also serving as a screening tool for the development of mAbs with desired pharmacokinetic properties.


Subject(s)
Antibodies, Monoclonal/blood , Histocompatibility Antigens Class I/metabolism , Immunoglobulin G/blood , Receptors, Fc/metabolism , Animals , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Half-Life , Humans , In Vitro Techniques , Mice , Mice, Transgenic
17.
Proc Natl Acad Sci U S A ; 110(35): 14420-5, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23946425

ABSTRACT

Bacterial communication plays an important role in many population-based phenotypes and interspecies interactions, including those in host environments. These interspecies interactions may prove critical to some infectious diseases, and it follows that communication between pathogenic bacteria and commensal bacteria is a subject of growing interest. Recent studies have shown that Escherichia coli uses the signaling molecule indole to increase antibiotic tolerance throughout its population. Here, we show that the intestinal pathogen Salmonella typhimurium increases its antibiotic tolerance in response to indole, even though S. typhimurium does not natively produce indole. Increased antibiotic tolerance can be induced in S. typhimurium by both exogenous indole added to clonal S. typhimurium populations and indole produced by E. coli in mixed-microbial communities. Our data show that indole-induced tolerance in S. typhimurium is mediated primarily by the oxidative stress response and, to a lesser extent, by the phage shock response, which were previously shown to mediate indole-induced tolerance in E. coli. Further, we find that indole signaling by E. coli induces S. typhimurium antibiotic tolerance in a Caenorhabditis elegans model for gastrointestinal infection. These results suggest that the intestinal pathogen S. typhimurium can intercept indole signaling from the commensal bacterium E. coli to enhance its antibiotic tolerance in the host intestine.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/metabolism , Salmonella typhimurium/physiology , Signal Transduction , Animals , Caenorhabditis elegans/pathogenicity , Drug Resistance, Microbial , Escherichia coli/drug effects , Helminthiasis/pathology , Salmonella typhimurium/drug effects
18.
Am J Med ; 126(8): 665-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23764268

ABSTRACT

The authors of 4 National Institutes of Health-sponsored antibiotic treatment trials of patients with persistent unexplained symptoms despite previous antibiotic treatment of Lyme disease determined that retreatment provides little if any benefit and carries significant risk. Two groups recently provided an independent reassessment of these trials and concluded that prolonged courses of antibiotics are likely to be helpful. We have carefully considered the points raised by these groups, along with our own critical review of the treatment trials. On the basis of this analysis, the conclusion that there is a meaningful clinical benefit to be gained from retreatment of such patients with parenteral antibiotic therapy cannot be justified.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Borrelia burgdorferi , Lyme Disease/drug therapy , Chronic Disease , Clinical Trials as Topic , Humans , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...