Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(18): 180402, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33196275

ABSTRACT

We explore the relationship between symmetrization and entanglement through measurements on few-particle systems in a multiwell potential. In particular, considering two or three trapped atoms, we measure and distinguish correlations arising from two different physical origins: antisymmetrization of the fermionic wave function and interaction between particles. We quantify this through the entanglement negativity of states, and the introduction of an antisymmetric negativity, which allows us to understand the role that symmetrization plays in the measured entanglement properties. We apply this concept both to pure theoretical states and to experimentally reconstructed density matrices of two or three mobile particles in an array of optical tweezers.

2.
Phys Rev Lett ; 122(8): 083401, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30932602

ABSTRACT

Access to single-particle momenta provides new means of studying the dynamics of a few interacting particles. In a joint theoretical and experimental effort, we observe and analyze the effects of a finite number of ultracold two-body collisions on the relative and single-particle densities by quenching two ultracold atoms with an initial narrow wave packet into a wide trap with an inverted aspect ratio. The experimentally observed spatial oscillations of the relative density are reproduced by a parameter-free zero-range theory and interpreted in terms of cross-dimensional flux. We theoretically study the long-time dynamics and find that the system does not approach its thermodynamic limit. The setup can be viewed as an advanced particle collider that allows one to watch the collision process itself.

SELECTION OF CITATIONS
SEARCH DETAIL
...