Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Inorg Biochem ; 213: 111202, 2020 12.
Article in English | MEDLINE | ID: mdl-33139022

ABSTRACT

Iron(III)-polymaltose pharmaceutical ferritin analogue Ferrifol® was investigated by high resolution transmission electron microscopy (HRTEM), X-ray diffraction, thermogravimetry, electron magnetic resonance (EMR) spectroscopy, direct current magnetization measurements and 57Fe Mössbauer spectroscopy to get novel information about the structural arrangement of the iron core. The Ferrifol® Mössbauer spectra measured in the range from 295 K to 90 K demonstrated non-Lorentzian two-peak pattern. These spectra were better fitted using a superposition of 5 quadrupole doublets with the same line width. The obtained Mössbauer parameters were different and an unusual line broadening with temperature decrease was observed. Measurements of the Ferrifol® Mössbauer spectra from 60 K to 20 K demonstrated a slow decrease of magnetic relaxation in the iron core. Zero-field-cooled and field-cooled magnetization measurements revealed a blocking temperature at ~33 K and a paramagnetic state of the Ferrifol® iron core at higher temperatures. Isothermal magnetization measurements at 5 K show that the saturation magnetic moment is ~0.31 emu/g. X-band EMR spectroscopy measurements revealed the presence of different magnetic species in the sample. Transmission electron microscopy demonstrated that the size of the iron cores in Ferrifol® is in the range 2-6 nm. The lattice periodicity in these iron cores, measured on the HRTEM images, vary in the range 2.2-2.7 Å. This can be best understood as sets of close packed O(OH) layers in ferrihydrite cores without long range correlation.


Subject(s)
Ferric Compounds/chemistry , Ferritins/chemistry , Magnetics , Maltose/chemistry , Pharmaceutical Preparations/chemistry , Microscopy, Electron, Transmission , Molecular Structure , Spectroscopy, Mossbauer , Temperature , X-Ray Diffraction
2.
Article in English | MEDLINE | ID: mdl-27372204

ABSTRACT

Mössbauer spectra of human liver ferritin and its pharmaceutical analogues Ferrum Lek and Maltofer® measured at various temperatures within the range of 295-83K were fitted using five quadrupole doublets related to different 57Fe microenvironments in various layers/regions of the ferrihydrite and akaganéite iron cores. The observed anomalous temperature dependences of some Mössbauer parameters were considered as a result of low temperature structural rearrangements in different layers/regions in the iron core.


Subject(s)
Ferritins/chemistry , Iron/chemistry , Nanoparticles/chemistry , Particle Size , Spectroscopy, Mossbauer , Temperature , Humans , Isomerism
3.
Article in English | MEDLINE | ID: mdl-24762570

ABSTRACT

A human liver ferritin, commercial Ferrum Lek and Maltofer® samples were studied using Mössbauer spectroscopy and electron paramagnetic resonance. Two Mössbauer spectrometers have been used: (i) a high velocity resolution (4096 channels) at 90 and 295K, (ii) and a low velocity resolution (250 channels) at 20 and 40 K. It is shown that the three studied materials have different superparamagnetic features at various temperatures. This may be caused by different magnetic anisotropy energy barriers, sizes (volume), structures and compositions of the iron cores. The electron paramagnetic resonance spectra of the ferritin, Ferrum Lek and Maltofer® were decomposed into multiple spectral components demonstrating the presence of minor ferro- or ferrimagnetic phases along with revealing marked differences among the studied substances. Mössbauer spectroscopy provides evidences on several components in the measured spectra which could be related to different regions, layers, nanocrystallites, etc. in the iron cores that coincides with heterogeneous and multiphase models for the ferritin iron cores.


Subject(s)
Electron Spin Resonance Spectroscopy , Ferric Compounds/chemistry , Ferritins/chemistry , Iron Isotopes/chemistry , Liver/metabolism , Organometallic Compounds/chemistry , Polysaccharides/chemistry , Spectroscopy, Mossbauer , Anisotropy , Humans , Iron/chemistry , Magnetics , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Reproducibility of Results , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL