Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(20)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34695931

ABSTRACT

Quantification of renal perfusion based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) requires determination of signal intensity time courses in the region of renal parenchyma. Thus, selection of voxels representing the kidney must be accomplished with special care and constitutes one of the major technical limitations which hampers wider usage of this technique as a standard clinical routine. Manual segmentation of renal compartments-even if performed by experts-is a common source of decreased repeatability and reproducibility. In this paper, we present a processing framework for the automatic kidney segmentation in DCE-MR images. The framework consists of two stages. Firstly, kidney masks are generated using a convolutional neural network. Then, mask voxels are classified to one of three regions-cortex, medulla, and pelvis-based on DCE-MRI signal intensity time courses. The proposed approach was evaluated on a cohort of 10 healthy volunteers who underwent the DCE-MRI examination. MRI scanning was repeated on two time events within a 10-day interval. For semantic segmentation task we employed a classic U-Net architecture, whereas experiments on voxel classification were performed using three alternative algorithms-support vector machines, logistic regression and extreme gradient boosting trees, among which SVM produced the most accurate results. Both segmentation and classification steps were accomplished by a series of models, each trained separately for a given subject using the data from other participants only. The mean achieved accuracy of the whole kidney segmentation was 94% in terms of IoU coefficient. Cortex, medulla and pelvis were segmented with IoU ranging from 90 to 93% depending on the tissue and body side. The results were also validated by comparing image-derived perfusion parameters with ground truth measurements of glomerular filtration rate (GFR). The repeatability of GFR calculation, as assessed by the coefficient of variation was determined at the level of 14.5 and 17.5% for the left and right kidney, respectively and it improved relative to manual segmentation. Reproduciblity, in turn, was evaluated by measuring agreement between image-derived and iohexol-based GFR values. The estimated absolute mean differences were equal to 9.4 and 12.9 mL/min/1.73 m2 for scanning sessions 1 and 2 and the proposed automated segmentation method. The result for session 2 was comparable with manual segmentation, whereas for session 1 reproducibility in the automatic pipeline was weaker.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted , Kidney/diagnostic imaging , Neural Networks, Computer , Reproducibility of Results
2.
Biomed Eng Online ; 17(1): 41, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29661193

ABSTRACT

BACKGROUND: With the development of versatile magnetic resonance acquisition techniques there arises a need for more advanced imaging simulation tools to enable adequate image appearance prediction, measurement sequence design and testing thereof. Recently, there is a growing interest in phase contrast angiography (PCA) sequence due to the capabilities of blood flow quantification that it offers. Moreover, as it is a non-contrast enhanced protocol, it has become an attractive option in areas, where usage of invasive contrast agents is not indifferent for the imaged tissue. Monitoring of the kidney function is an example of such an application. RESULTS: We present a computer framework for simulation of the PCA protocol, both conventional and accelerated with echo-planar imaging (EPI) readout, and its application to the numerical models of kidney vasculatures. Eight patient-specific renal arterial trees were reconstructed following vessel segmentation in real computed tomography angiograms. In addition, a synthetic model was designed using a vascular tree growth simulation algorithm. The results embrace a series of synthetic PCA images of the renal arterial trees giving insight into the image formation and quantification of kidney hemodynamics. CONCLUSIONS: The designed simulation framework enables quantification of the PCA measurement error in relation to ground-truth flow velocity data. The mean velocity measurement error for the reconstructed renal arterial trees range from 1.5 to 12.8% of the aliasing velocity value, depending on image resolution and flip angle. No statistically significant difference was observed between measurements obtained using EPI with a number of echos (NETL) = 4 and conventional PCA. In case of higher NETL factors peak velocity values can be underestimated up to 34%.


Subject(s)
Angiography , Arteries/diagnostic imaging , Image Processing, Computer-Assisted/methods , Kidney/blood supply , Models, Biological , Humans , Principal Component Analysis
3.
Comput Methods Programs Biomed ; 137: 293-309, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28110733

ABSTRACT

BACKGROUND AND OBJECTIVE: Accurate vessel segmentation of magnetic resonance angiography (MRA) images is essential for computer-aided diagnosis of cerebrovascular diseases such as stenosis or aneurysm. The ability of a segmentation algorithm to correctly reproduce the geometry of the arterial system should be expressed quantitatively and observer-independently to ensure objectivism of the evaluation. METHODS: This paper introduces a methodology for validating vessel segmentation algorithms using a custom-designed MRA simulation framework. For this purpose, a realistic reference model of an intracranial arterial tree was developed based on a real Time-of-Flight (TOF) MRA data set. With this specific geometry blood flow was simulated and a series of TOF images was synthesized using various acquisition protocol parameters and signal-to-noise ratios. The synthesized arterial tree was then reconstructed using a level-set segmentation algorithm available in the Vascular Modeling Toolkit (VMTK). Moreover, to present versatile application of the proposed methodology, validation was also performed for two alternative techniques: a multi-scale vessel enhancement filter and the Chan-Vese variant of the level-set-based approach, as implemented in the Insight Segmentation and Registration Toolkit (ITK). The segmentation results were compared against the reference model. RESULTS: The accuracy in determining the vessels centerline courses was very high for each tested segmentation algorithm (mean error rate = 5.6% if using VMTK). However, the estimated radii exhibited deviations from ground truth values with mean error rates ranging from 7% up to 79%, depending on the vessel size, image acquisition and segmentation method. CONCLUSIONS: We demonstrated the practical application of the designed MRA simulator as a reliable tool for quantitative validation of MRA image processing algorithms that provides objective, reproducible results and is observer independent.


Subject(s)
Algorithms , Cerebral Arteries/diagnostic imaging , Magnetic Resonance Angiography , Humans
4.
PLoS One ; 9(4): e93689, 2014.
Article in English | MEDLINE | ID: mdl-24740285

ABSTRACT

With the development of medical imaging modalities and image processing algorithms, there arises a need for methods of their comprehensive quantitative evaluation. In particular, this concerns the algorithms for vessel tracking and segmentation in magnetic resonance angiography images. The problem can be approached by using synthetic images, where true geometry of vessels is known. This paper presents a framework for computer modeling of MRA imaging and the results of its validation. A new model incorporates blood flow simulation within MR signal computation kernel. The proposed solution is unique, especially with respect to the interface between flow and image formation processes. Furthermore it utilizes the concept of particle tracing. The particles reflect the flow of fluid they are immersed in and they are assigned magnetization vectors with temporal evolution controlled by MR physics. Such an approach ensures flexibility as the designed simulator is able to reconstruct flow profiles of any type. The proposed model is validated in a series of experiments with physical and digital flow phantoms. The synthesized 3D images contain various features (including artifacts) characteristic for the time-of-flight protocol and exhibit remarkable correlation with the data acquired in a real MR scanner. The obtained results support the primary goal of the conducted research, i.e. establishing a reference technique for a quantified validation of MR angiography image processing algorithms.


Subject(s)
Computer Simulation , Magnetic Resonance Angiography , Algorithms , Imaging, Three-Dimensional , Models, Anatomic , Regional Blood Flow
6.
Comput Methods Programs Biomed ; 113(1): 396-411, 2014.
Article in English | MEDLINE | ID: mdl-23164524

ABSTRACT

This paper presents an in-depth study of several approaches to exploratory analysis of wireless capsule endoscopy images (WCE). It is demonstrated that versatile texture and color based descriptors of image regions corresponding to various anomalies of the gastrointestinal tract allows their accurate detection of pathologies in a sequence of WCE frames. Moreover, through classification of single pixels described by texture features of their neighborhood, the images can be segmented into homogeneous areas well matched to the image content. For both, detection and segmentation tasks the same procedure is applied which consists of features calculation, relevant feature subset selection and classification stages. This general three-stage framework is realized using various recognition strategies. In particular, the performance of the developed Vector Supported Convex Hull classification algorithm is compared against Support Vector Machines run in configuration with two different feature selection methods.


Subject(s)
Capsule Endoscopy , Color , Education, Medical, Continuing
7.
Comput Methods Programs Biomed ; 107(2): 140-54, 2012 Aug.
Article in English | MEDLINE | ID: mdl-21803438

ABSTRACT

A method is proposed for quantitative description of blood-vessel trees, which can be used for tree classification and/or physical parameters indirect monitoring. The method is based on texture analysis of 3D images of the trees. Several types of trees were defined, with distinct tree parameters (number of terminal branches, blood viscosity, input and output flow). A number of trees were computer-simulated for each type. 3D image was computed for each tree and its texture features were calculated. Best discriminating features were found and applied to 1-NN nearest neighbor classifier. It was demonstrated that (i) tree images can be correctly classified for realistic signal-to-noise ratio, (ii) some texture features are monotonously related to tree parameters, (iii) 2D texture analysis is not sufficient to represent the trees in the discussed sense. Moreover, applicability of texture model to quantitative description of vascularity images was also supported by unsupervised exploratory analysis. Eventually, the experimental confirmation was done, with the use of confocal microscopy images of rat brain vasculature. Several classes of brain tissue were clearly distinguished based on 3D texture numerical parameters, including control and different kinds of tumours - treated with NG2 proteoglycan to promote angiogenesis-dependent growth of the abnormal tissue. The method, applied to magnetic resonance imaging e.g. real neovasculature or retinal images can be used to support noninvasive medical diagnosis of vascular system diseases.


Subject(s)
Brain Neoplasms/pathology , Cerebral Angiography/methods , Glioma/pathology , Imaging, Three-Dimensional/methods , Microscopy, Confocal/methods , Neovascularization, Pathologic/pathology , Pattern Recognition, Automated/methods , Algorithms , Animals , Computer Simulation , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Models, Biological , Rats , Reproducibility of Results , Sensitivity and Specificity
8.
Comput Methods Programs Biomed ; 94(1): 66-76, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18922598

ABSTRACT

MaZda, a software package for 2D and 3D image texture analysis is presented. It provides a complete path for quantitative analysis of image textures, including computation of texture features, procedures for feature selection and extraction, algorithms for data classification, various data visualization and image segmentation tools. Initially, MaZda was aimed at analysis of magnetic resonance image textures. However, it revealed its effectiveness in analysis of other types of textured images, including X-ray and camera images. The software was utilized by numerous researchers in diverse applications. It was proven to be an efficient and reliable tool for quantitative image analysis, even in more accurate and objective medical diagnosis. MaZda was also successfully used in food industry to assess food product quality. MaZda can be downloaded for public use from the Institute of Electronics, Technical University of Lodz webpage.


Subject(s)
Image Processing, Computer-Assisted , Software , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...