Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosurg ; 139(5): 1396-1404, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37029679

ABSTRACT

OBJECTIVE: Intrinsic function is indispensable for dexterous hand movements. Distal ulnar nerve defects can result in intrinsic muscle dysfunction and sensory deficits. Although the ulnar nerve's fascicular anatomy has been extensively studied, quantitative and topographic data on motor axons traveling within this nerve remain elusive. METHODS: The ulnar nerves of 14 heart-beating organ donors were evaluated. The motor branches to the flexor carpi ulnaris (FCU) and flexor digitorum profundus (FDP) muscles and the dorsal branch (DoBUN) as well as 3 segments of the ulnar nerve were harvested in 2-cm increments. Samples were subjected to double immunofluorescence staining using antibodies against choline acetyltransferase and neurofilament. RESULTS: Samples revealed more than 25,000 axons in the ulnar nerve at the forearm level, with a motor axon proportion of only 5%. The superficial and DoBUN showed high axon numbers of more than 21,000 and 9300, respectively. The axonal mapping of more than 1300 motor axons revealed an increasing motor/sensory ratio from the proximal ulnar nerve (1:20) to the deep branch of the ulnar nerve (1:7). The motor branches (FDP and FCU) showed that sensory axons outnumber motor axons by a ratio of 10:1. CONCLUSIONS: Knowledge of the detailed axonal architecture of the motor and sensory components of the human ulnar nerve is of the utmost importance for surgeons considering fascicular grafting or nerve transfer surgery. The low number of efferent axons in motor branches of the ulnar nerve and their distinct topographical distribution along the distal course of the nerve is indispensable information for modern nerve surgery.


Subject(s)
Nerve Transfer , Ulnar Nerve , Humans , Forearm/innervation , Muscle, Skeletal/innervation , Elbow , Axons/physiology
2.
J Neurosci ; 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36216502

ABSTRACT

The surgical redirection of efferent neural input to a denervated muscle via a nerve transfer can reestablish neuromuscular control after nerve injuries. The role of autonomic nerve fibers during the process of muscular reinnervation remains largely unknown. Here, we investigated the neurobiological mechanisms behind the spontaneous functional recovery of denervated facial muscles in male rodents. Recovered facial muscles demonstrated an abundance of cholinergic axonal endings establishing functional neuromuscular junctions. The parasympathetic source of the neuronal input was confirmed to be in the pterygopalatine ganglion. Furthermore, the autonomically reinnervated facial muscles underwent a muscle fiber change to a purely intermediate muscle fiber population (MHCIIa). Finally, electrophysiological tests revealed that the postganglionic parasympathetic fibers travel to the facial muscles via the sensory infraorbital nerve. Our findings demonstrated expanded neuromuscular plasticity of denervated striated muscles enabling functional recovery via alien autonomic fibers. These findings may further explain the underlying mechanisms of sensory protection implemented to prevent atrophy of a denervated muscle.SIGNIFICANCE STATEMENT:Nerve injuries represent significant morbidity and disability for patients. Rewiring motor nerve fibers to other target muscles have shown to be a successful approach in the restoration of motor function. This demonstrates the remarkable capacity of the central nervous system to adapt to the needs of the neuromuscular system. Yet, the capability of skeletal muscles being reinnervated by non-motor axons remains largely unknown. Here, we show that under deprivation of original efferent input, the neuromuscular system can undergo functional and morphological remodeling via autonomic nerve fibers. This may explain neurobiological mechanisms of the sensory protection phenomenon, which is due to parasympathetic reinnervation.

3.
Elife ; 102021 10 01.
Article in English | MEDLINE | ID: mdl-34596042

ABSTRACT

Surgical nerve transfers are used to efficiently treat peripheral nerve injuries, neuromas, phantom limb pain, or improve bionic prosthetic control. Commonly, one donor nerve is transferred to one target muscle. However, the transfer of multiple nerves onto a single target muscle may increase the number of muscle signals for myoelectric prosthetic control and facilitate the treatment of multiple neuromas. Currently, no experimental models are available. This study describes a novel experimental model to investigate the neurophysiological effects of peripheral double nerve transfers to a common target muscle. In 62 male Sprague-Dawley rats, the ulnar nerve of the antebrachium alone (n=30) or together with the anterior interosseus nerve (n=32) was transferred to reinnervate the long head of the biceps brachii. Before neurotization, the motor branch to the biceps' long head was transected at the motor entry point. Twelve weeks after surgery, muscle response to neurotomy, behavioral testing, retrograde labeling, and structural analyses were performed to assess reinnervation. These analyses indicated that all nerves successfully reinnervated the target muscle. No aberrant reinnervation was observed by the originally innervating nerve. Our observations suggest a minimal burden for the animal with no signs of functional deficit in daily activities or auto-mutilation in both procedures. Furthermore, standard neurophysiological analyses for nerve and muscle regeneration were applicable. This newly developed nerve transfer model allows for the reliable and standardized investigation of neural and functional changes following the transfer of multiple donor nerves to one target muscle.


Subject(s)
Muscle, Skeletal/physiology , Nerve Transfer/methods , Peripheral Nerve Injuries/surgery , Peripheral Nerves/surgery , Animals , Forelimb/surgery , Male , Muscle, Skeletal/surgery , Nerve Regeneration/physiology , Rats , Rats, Sprague-Dawley , Ulnar Nerve/surgery
4.
Front Med (Lausanne) ; 7: 613138, 2020.
Article in English | MEDLINE | ID: mdl-33363189

ABSTRACT

Introduction: Current imaging modalities for peripheral nerves display the nerve's structure but not its function. Based on a nerve's capacity for axonal transport, it may be visualized by targeted application of a contrast agent and assessing the distribution through radiological imaging, thus revealing a nerve's continuity. This concept has not been explored, however, may potentially guide the treatment of peripheral nerve injuries. In this experimental proof-of-concept study, we tested imaging through MRI after administering gadolinium-based contrast agents which were then retrogradely transported. Methods: We synthesized MRI contrast agents consisting of paramagnetic agents and various axonal transport facilitators (HSA-DTPA-Gd, chitosan-DTPA-Gd or PLA/HSA-DTPA-Gd). First, we measured their relaxivity values in vitro to assess their radiological suitability. Subsequently, the sciatic nerve of 24 rats was cut and labeled with one of the contrast agents to achieve retrograde distribution along the nerve. One week after surgery, the spinal cords and sciatic nerves were harvested to visualize the distribution of the respective contrast agent using 7T MRI. In vivo MRI measurements were performed using 9.4 T MRI on the 1st, 3rd, and the 7th day after surgery. Following radiological imaging, the concentration of gadolinium in the harvested samples was analyzed using inductively coupled mass spectrometry (ICP-MS). Results: All contrast agents demonstrated high relaxivity values, varying between 12.1 and 116.0 mM-1s-1. HSA-DTPA-Gd and PLA/HSA-DTPA-Gd application resulted in signal enhancement in the vertebral canal and in the sciatic nerve in ex vivo MRI. In vivo measurements revealed significant signal enhancement in the sciatic nerve on the 3rd and 7th day after HSA-DTPA-Gd and chitosan-DTPA-Gd (p < 0.05) application. Chemical evaluation showed high gadolinium concentration in the sciatic nerve for HSA-DTPA-Gd (5.218 ± 0.860 ng/mg) and chitosan-DTPA-Gd (4.291 ± 1.290 ng/mg). Discussion: In this study a novel imaging approach for the evaluation of a peripheral nerve's integrity was implemented. The findings provide radiological and chemical evidence of successful contrast agent uptake along the sciatic nerve and its distribution within the spinal canal in rats. This novel concept may assist in the diagnostic process of peripheral nerve injuries in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...