Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Electrophoresis ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853649

ABSTRACT

Developing paper-based electrophoretic methods involve dealing with significant uncertainty levels when compared to their capillary counterparts. Critical information for developing these kinds of methods are the electrophoretic mobility of background electrolytes and samples. This work presents the design and characterization of a device for measuring the electrophoretic mobilities of dyes in porous media. The device was developed with the aim of validating a previously presented model and also proposing a protocol for the straightforward determination of electrophoretic mobilities in porous media when open-channel values are already known. Whatman #1 paper was used as a model substrate as far as it is the most common porous medium substrate for paper-based electrophoresis. The device was designed using a numerical simulation-assisted approach, utilizing OpenFOAM® and specific solvers for capillary transport and electromigration, namely porousMicroTransport and electroMicroTransport, respectively. The electrophoretic mobilities of five dyes were analyzed experimentally with the proposed device. To establish appropriate comparative values at different pHs, experiments in fused silica capillaries were also performed. An effective parameter model for describing the electrophoretic behavior of dyes in porous media, that is, the constriction factor, was found consistent with previous reports for the Whatman #1 paper. This consistency was found after considering (via direct measurements) the chromatographic effect of the medium over each dye. Consequently, the recorded values hold significant worth due to their potential for direct application in designing new experiments or devices in Whatman #1 paper. With the validation of the model through the experiments with the proposed device, those researchers interested on developing electrophoretic methods in porous substrates can make use of the open-channel electrophoretic mobilities reported in the literature, or in the well-known software databases, and correct them for the media of interest just by performing two simple characterization steps.

2.
Sci Rep ; 12(1): 8969, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35624294

ABSTRACT

The integration of smartphones and microfluidics is nowadays the best possible route to achieve effective point-of-need testing (PONT), a concept increasingly demanded in the fields of human health, agriculture, food safety, and environmental monitoring. Nevertheless, efforts are still required to integrally seize all the advantages of smartphones, as well as to share the developments in easily adoptable formats. For this purpose, here we present the free platform appuente that was designed for the easy integration of microfluidic chips, smartphones, and the cloud. It includes a mobile app for end users, which provides chip identification and tracking, guidance and control, processing, smart-imaging, result reporting and cloud and Internet of Things (IoT) integration. The platform also includes a web app for PONT developers, to easily customize their mobile apps and manage the data of administered tests. Three application examples were used to validate appuente: a dummy grayscale detector that mimics quantitative colorimetric tests, a root elongation assay for pesticide toxicity assessment, and a lateral flow immunoassay for leptospirosis detection. The platform openly offers fast prototyping of smartphone apps to the wide community of lab-on-a-chip developers, and also serves as a friendly framework for new techniques, IoT integration and further capabilities. Exploiting these advantages will certainly help to enlarge the use of PONT with real-time connectivity in the near future.


Subject(s)
Mobile Applications , Smartphone , Food Safety , Humans , Lab-On-A-Chip Devices , Microfluidics
3.
Electrophoresis ; 42(16): 1543-1551, 2021 08.
Article in English | MEDLINE | ID: mdl-33991437

ABSTRACT

A new tool for the solution of electromigrative separations in paper-based microfluidics devices is presented. The implementation is based on a recently published complete mathematical model for describing these types of separations, and was developed on top of the open-source toolbox electroMicroTransport, based on OpenFOAM® , inheriting all its features as native 3D problem handling, support for parallel computation, and a GNU GPL license. The presented tool includes full support for paper-based electromigrative separations (including EOF and the novel mechanical and electrical dispersion effects), compatibility with a well-recognized electrolyte database, and a novel algorithm for computing and controlling the electric current in arbitrary geometries. Additionally, the installation on any operating system is available due to its novel installation option in the form of a Docker image. A validation example with data from literature is included, and two extra application examples are provided, including a 2D free-flow IEF problem, which demonstrates the capabilities of the toolbox for dealing with computational and physicochemical modeling challenges simultaneously. This tool will enable efficient and reliable numerical prototypes of paper-based electrophoretic devices to accompany the contemporary fast growth in paper-based microfluidics.


Subject(s)
Microfluidics , Algorithms , Lab-On-A-Chip Devices , Models, Theoretical , Software
4.
Electrophoresis ; 42(7-8): 975-982, 2021 04.
Article in English | MEDLINE | ID: mdl-33433920

ABSTRACT

A novel method for electroosmotic flow (EOF) measurement on paper substrates is presented; it is based on dynamic mass measurements by simply using an analytical balance. This technique provides a more reliable alternative to other EOF measurement methods on porous media. The proposed method is used to increase the amount and quality of the available information about physical parameters that characterize fluid flow on microfluidic paper-based analytical devices (µPADs). Measurements were performed on some of the most frequently used materials for µPADs, i.e., Whatman #1 , S&S, and Muntktell 00A filter paper. Obtained experimental results are consistent with the few previously reported data, either experimental or numerical, characterizing EOF in paper substrates. Moreover, a thorough analysis is presented for the quantification of the different effects that affect the measurements such as Joule effect and evaporation. Experimental results enabled, for the first time, to establish well-defined electroosmotic characteristics for the three substrates in terms of the magnitude of EOF as funtion of pH, enabling researchers to make a rational choice of the substrate depending on the electrophoretic technique to be implemented. The measurement method can be described as robust, reliable, and affordable enough for being adopted by researchers and companies devoted to electrophoretic µPADs and related technologies.


Subject(s)
Electroosmosis , Filtration , Electrophoresis
5.
Electrophoresis ; 41(7-8): 598-606, 2020 04.
Article in English | MEDLINE | ID: mdl-31904869

ABSTRACT

A complete mathematical model for electromigration in paper-based analytical devices is derived, based on differential equations describing the motion of fluids by pressure sources and EOF, the transport of charged chemical species, and the electric potential distribution. The porous medium created by the cellulose fibers is considered like a network of tortuous capillaries and represented by macroscopic parameters following an effective medium approach. The equations are obtained starting from their open-channel counterparts, applying scaling laws and, where necessary, including additional terms. With this approach, effective parameters are derived, describing diffusion, mobility, and conductivity for porous media. While the foundations of these phenomena can be found in previous reports, here, all the contributions are analyzed systematically and provided in a comprehensive way. Moreover, a novel electrophoretically driven dispersive transport mechanism in porous materials is proposed. Results of the numerical implementation of the mathematical model are compared with experimental data, showing good agreement and supporting the validity of the proposed model. Finally, the model succeeds in simulating a challenging case of free-flow electrophoresis in paper, involving capillary flow and electrophoretic transport developed in a 2D geometry.


Subject(s)
Electrophoresis/methods , Microfluidic Analytical Techniques/methods , Models, Chemical , Paper , Diffusion , Electric Conductivity
6.
J Chromatogr A ; 1610: 460595, 2020 Jan 11.
Article in English | MEDLINE | ID: mdl-31606156

ABSTRACT

We discuss several possible phenomena in electrophoretic systems with complexing agents present in the background electrolyte. In our previous work, we extended the linear theory of electromigration with the first-order nonlinear term, which originally applied to acid-base equilibria only, by generalizing it to any fast chemical equilibria. This extension provides us with a fresh insight into the well-established technique of elecktrokinetic chromatography (EKC). We combine mathematical analysis of the generalized model with its solution by means of the new version of our software PeakMaster 6, and experimental data. We re-examine the fundamental equations by Wren and Rowe and Tiselius in the frame of the generalized linear theory of electromigration. Besides, we show that selector concentration can increase inside the interacting-analyte zone due to its complexation with the analyte, which contradicts the generally accepted idea of a consumption of a portion of the selector inside the zone. Next, we focus our discussion on interacting buffers (i.e., buffer constituents that form a complex with the selector). We demonstrate how such side-interaction of the selector with another buffer constituent can influence measuring analyte-selector interactions. Finally, we describe occurrence and mobilities of system peaks in these EKC systems. We investigate systems with fully charged analytes and neutral cyclodextrins as selectors. Although the theory is not limited in terms of the charge and/or the degree of (de)protonation of any constituent, this setup allows us to find analytical solutions to generalized model under approximate, yet realistic, conditions and to demonstrate all important phenomena that may occur in EKC systems. An occurrence of system peaks in a system with fully charged selector is also investigated.


Subject(s)
Electrophoresis, Capillary/methods , Electrophoresis/methods , Buffers , Cyclodextrins/chemistry , Electrolytes/chemistry , Linear Models , Software , Stereoisomerism
7.
Electrophoresis ; 41(7-8): 562-569, 2020 04.
Article in English | MEDLINE | ID: mdl-31677285

ABSTRACT

Microfluidic paper-based analytical devices (µPADs) allow user-friendly and portable chemical determinations, although they provide limited applicability due to insufficient sensitivity. Several approaches have been proposed to address poor sensitivity in µPADs, but they frequently require bulky equipment for power and/or read-outs. Universal serial buses (USB) are an attractive alternative to less portable power sources and are currently available in many common electronic devices. Here, USB-powered µPADs (USB µPADs) are proposed as a fusion of both technologies to improve performance without adding instrumental complexity. Two ITP USB µPADs were developed, both powered by a 5 V potential provided through standard USB ports. The first device was fabricated using the origami approach. Its operation was analyzed experimentally and numerically, yielding a two-order-of-magnitude sample focusing in 15 min. The second ITP USB µPAD is a novel design, which was numerically prototyped with the aim of handling larger sample volumes. The reservoirs were moved away from the ITP channel and capillary action was used to drive the sample and electrolytes to the separation zone, predicting 25-fold sample focusing in 10 min. USB µPADs are expected to be adopted by minimally-trained personnel in sensitive areas like resource-limited settings, the point-of-care and in emergencies.


Subject(s)
Isotachophoresis/instrumentation , Microfluidic Analytical Techniques/instrumentation , Paper , Electric Power Supplies , Electrolytes/chemistry , Equipment Design
8.
Anal Chem ; 91(13): 8298-8303, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31088048

ABSTRACT

This work describes a method to fabricate three-dimensional paper microfluidic devices in one step, without the need of stacking layers of paper, glue, or tape. We used a nontransparent negative photoresist that allows patterning selectively (vertically) the paper, creating systems of two or three layers, including channels. To demonstrate the capabilities of this methodology, we designed, fabricated, and tested a six-level diluter. The performance of the device was also simulated using a simple numerical model implemented in the program PETSc-FEM. The resulting µPAD is small (1.6 cm × 2.2 cm), inexpensive, requires low volumes of sample (5 µL), and is able to perform mixing and dilution in 2 min.

9.
Electrophoresis ; 40(5): 683-692, 2019 03.
Article in English | MEDLINE | ID: mdl-30548631

ABSTRACT

The linear theory of electromigration, including the first-order nonlinear approximation, is generalized to systems with any equilibria fast enough to be considered instantaneous in comparison with the timescale of peak movement. For example, this theory is practically applied in the electrokinetic chromatography (EKC) mode of the CZE. The model enables the calculation of positions and shapes of analyte and system peaks without restricting the number of selectors, the complexation stoichiometry, or simultaneous acid-base equilibria. The latest version of our PeakMaster software, PeakMaster 6-Next Generation, implements the theory in a user-friendly way. It is a free and open-source software that performs all calculations and shows the properties of the background electrolyte and the expected electropherogram within a few seconds. In this paper, we mathematically derive the model, discuss its applicability to EKC systems, and introduce the PeakMaster 6 software.


Subject(s)
Electrophoresis, Capillary/methods , Software , Capillary Electrochromatography/methods , Electrolytes/chemistry , Ions/chemistry , Linear Models , Models, Chemical
10.
J Chromatogr A ; 1561: 83-91, 2018 Aug 03.
Article in English | MEDLINE | ID: mdl-29843946

ABSTRACT

The generation of concentration gradients is an essential operation for several analytical processes implemented on microfluidic paper-based analytical devices. The dynamic gradient formation is based on the transverse dispersion of chemical species across co-flowing streams. In paper channels, this transverse flux of molecules is dominated by mechanical dispersion, which is substantially different than molecular diffusion, which is the mechanism acting in conventional microchannels. Therefore, the design of gradient generators on paper requires strategies different from those used in traditional microfluidics. This work considers the foundations of transverse dispersion in porous substrates to investigate the optimal design of microfluidic paper-based concentration gradient generators (µPGGs) by computer simulations. A set of novel and versatile µPGGs were designed in the format of numerical prototypes, and virtual experiments were run to explore the ranges of operation and the overall performance of such devices. Then physical prototypes were fabricated and experimentally tested in our lab. Finally, some basic rules for the design of optimized µPGGs are proposed. Apart from improving the efficiency of mixers, diluters and µPGGs, the results of this investigation are relevant to attain highly controlled concentration fields on paper-based devices.


Subject(s)
Lab-On-A-Chip Devices/standards , Microfluidics/instrumentation , Paper , Equipment Design
11.
Anal Bioanal Chem ; 408(30): 8621-8622, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27904943
12.
Anal Bioanal Chem ; 408(30): 8713-8725, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27815613

ABSTRACT

Monitoring analytes during the transfer step from the first to the second dimension in multidimensional electrophoretic separations is crucial to determine and control the optimal time point for sample transfer and thus to avoid band broadening or unwanted splitting of the sample band with consequent sample loss. A spatially resolved intermediate on-chip LED-induced fluorescence detection system was successfully implemented for a hybrid capillary-chip glass interface. The setup includes a high-power 455-nm LED prototype as an excitation light source and a linear light fiber array consisting of 23 light fibers with a diameter of 100 µm for spatially resolved fluorescence detection in combination with a push-broom imager for hyperspectral detection. Using a basic FITC solution, the linear working range was determined to be 0.125 to 25 µg/ml for a single light guide and the absolute detection limit was 0.04 fmol at a signal-to-noise ratio of 4. With the setup presented here, labeled ß-lactoglobulin focused via capillary isoelectric focusing was detectable on-chip with a sufficient intensity to monitor the analyte band transfer in the glass-chip interface demonstrating its applicability for full or intermediate on-chip detection.


Subject(s)
Electrophoresis, Capillary/methods , Electrophoresis, Microchip/methods , Isoelectric Focusing/methods , Lactoglobulins/isolation & purification , Electrophoresis, Capillary/instrumentation , Electrophoresis, Microchip/instrumentation , Equipment Design , Fluorescein-5-isothiocyanate/chemistry , Fluorescent Dyes/chemistry , Isoelectric Focusing/instrumentation , Lactoglobulins/chemistry , Solutions/chemistry , Spectrometry, Fluorescence , Staining and Labeling/methods
13.
Electrophoresis ; 37(22): 3020-3024, 2016 11.
Article in English | MEDLINE | ID: mdl-27589152

ABSTRACT

We present the study on the sample transfer characteristics of two different microfluidic interfaces for 2D-CE . These interfaces were manufactured using two different microfabrication technologies: one was obtained via the classical photolithography-wet etching-anodic-bonding process; and the other was obtained via the selective laser-induced etching process. The comparison of the two interfaces, and an intact capillary as a reference, was made via the CE separation of amino acids (arginine and lysine) under different bulk flow conditions, with and without applying bias potential to the secondary channels. The influence on peak shapes, migration times, and repeatabiliy were evaluated.


Subject(s)
Electrophoresis, Capillary/instrumentation , Electrophoresis, Capillary/methods , Amino Acids/analysis , Amino Acids/chemistry , Amino Acids/isolation & purification , Equipment Design , Reproducibility of Results
14.
Anal Bioanal Chem ; 407(1): 119-38, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25228075

ABSTRACT

Multidimensional electrophoretic separations represent one of the most common strategies for dealing with the analysis of complex samples. In recent years we have been witnessing the explosive growth of separation techniques for the analysis of complex samples in applications ranging from life sciences to industry. In this sense, electrophoretic separations offer several strategic advantages such as excellent separation efficiency, different methods with a broad range of separation mechanisms, and low liquid consumption generating less waste effluents and lower costs per analysis, among others. Despite their impressive separation efficiency, multidimensional electrophoretic separations present some drawbacks that have delayed their extensive use: the volumes of the columns, and consequently of the injected sample, are significantly smaller compared to other analytical techniques, thus the coupling interfaces between two separations components must be very efficient in terms of providing geometrical precision with low dead volume. Likewise, very sensitive detection systems are required. Additionally, in electrophoretic separation techniques, the surface properties of the columns play a fundamental role for electroosmosis as well as the unwanted adsorption of proteins or other complex biomolecules. In this sense the requirements for an efficient coupling for electrophoretic separation techniques involve several aspects related to microfluidics and physicochemical interactions of the electrolyte solutions and the solid capillary walls. It is interesting to see how these multidimensional electrophoretic separation techniques have been used jointly with different detection techniques, for intermediate detection as well as for final identification and quantification, particularly important in the case of mass spectrometry. In this work we present a critical review about the different strategies for coupling two or more electrophoretic separation techniques and the different intermediate and final detection methods implemented for such separations.


Subject(s)
Electrophoresis/methods , Proteins/isolation & purification , Animals , Electrophoresis/instrumentation , Humans , Proteins/chemistry
15.
Anal Bioanal Chem ; 406(28): 7163-74, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25260406

ABSTRACT

Isotachophoresis (ITP) has long been used alone but also as a preconcentration technique for capillary electrophoresis (CE). Unfortunately, up to now, its application is restricted to relatively strong acids and bases as either the degree of (de)protonation is too low or the water dissociation is too high, evoking zone electrophoresis. With the comprehensive ITP analysis of all 20 proteinogenic amino acids as model analytes, we, here, show that non-aqueous ITP using dimethylsulfoxide as a solvent solves this ITP shortcoming. Dimethylsulfoxide changes the pH regime of analytes and electrolytes but, more importantly, strongly reduces the proton mobility by prohibiting hydrogen bonds and thus, the so-called Zundel-Eigen-Zundel electrical conduction mechanism of flipping hydrogen bonds. The effects are demonstrated in an electrolyte system with taurine or H(+) as terminator, and imidazole as leader together with strong acids such as oxalic and even trifluoroacetic acid as counterions, both impossible to use in aqueous solution. Mass spectrometric as well as capacitively coupled contactless conductivity detection (C(4)D) are used to follow the ITP processes. To demonstrate the preconcentration capabilities of ITP in a two-dimensional set-up, we, here, also demonstrate that our non-aqueous ITP method can be combined with capillary electrophoresis-mass spectrometry in a column-coupling system using a hybrid approach of capillaries coupled to a microfluidic interface. For this, C(4)D was optimized for on-chip detection with the electrodes aligned on top of a thin glass lid of the microfluidic chip.


Subject(s)
Alkalies/metabolism , Amino Acids/isolation & purification , Amino Acids/metabolism , Electrolytes/chemistry , Electrophoresis, Capillary/methods , Isotachophoresis/methods , Spectrometry, Mass, Electrospray Ionization/methods
16.
Anal Bioanal Chem ; 406(25): 6347-62, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25106544

ABSTRACT

High production output of solid pharmaceutical formulations requires fast methods to ensure their quality. Likewise, fast analytical procedures are required in forensic sciences, for example at customs, to substantiate an initial suspicion. We here present the design and the optimization of an instrumental setup for rapid and non-invasive characterization of tablets by laser-induced fluorescence spectroscopy (with a UV-laser (λ ex = 266 nm) as excitation source) in reflection geometry. The setup was first validated with regard to repeatability, bleaching phenomena, and sensitivity. The effect on the spectra by the physical and chemical properties of the samples, e.g. their hardness, homogeneity, chemical composition, and granule grain size of the uncompressed material, using a series of tablets, manufactured in accordance with design of experiments, was investigated. Investigation of tablets with regard to homogeneity, especially, is extremely important in pharmaceutical production processes. We demonstrate that multiplicative scatter correction is an appropriate tool for data preprocessing of fluorescence spectra. Tablets with different physical and chemical characteristics can be discriminated well from their fluorescence spectra by subjecting the results to principal component analysis.


Subject(s)
Pharmaceutical Preparations/chemistry , Spectrometry, Fluorescence/methods , Lasers , Spectrometry, Fluorescence/instrumentation , Tablets/chemistry
17.
J Chromatogr A ; 1297: 204-12, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23706548

ABSTRACT

Two-dimensional electrophoretic separations are one of the most promising tools for the continuously growing needs of different bioanalytical fields such as proteomics and metabolomics. In this work we present the design and the implementation of a two-dimensional electrophoretic separation coupled to mass spectrometry. We started our work studying the sample transfer characteristics of different microfluidic interfaces compatible with capillary coupling for two-dimensional electrophoretic separations. These junctions are aimed at method decoupling and sample transfer in a modular two-dimensional electrophoretic separation system. In order to perform the characterization of the interfaces, we carried out capillary electrophoresis experiments and numerical simulations using three cationic compounds under different flow conditions. The comparison of the experimental and simulation results enables us to clearly define the desirable characteristics of interfaces in order to achieve method orthogonality with lossless sample transfer in a two-dimensional separation system. Finally, we present a glass microfluidic chip as interface for the implementation of a novel hybrid modular system for performing two-dimensional electrophoretic separations involving isotachophoresis and capillary electrophoresis. In this setup we include mass spectrometric and contactless capacitively coupled conductivity detection to monitor the separation process. We demonstrate the ability of the setup to be used as a flexible analysis tool by performing preconcentration, separation, detection and identification of four different human angiotensin peptides.


Subject(s)
Electrophoresis, Capillary/instrumentation , Isotachophoresis/instrumentation , Mass Spectrometry/instrumentation , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Angiotensins/analysis , Angiotensins/isolation & purification , Computer Simulation , Electrophoresis, Gel, Two-Dimensional , Humans , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...