Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; : e202400308, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875288

ABSTRACT

Diarylformamides are shown to be a safe reservoir and source of CO. Perfectly selective decarbonylation is achieved in solution at room temperature with potassium and cesium diarylamide catalysts. Moreover, solvent-free decarbonylations may be run either in a diphenylformamide melt at 70 ºC or, when the bisformamide 9 is used, in the solid state at 88 ºC in virtue of its improved atom economy. These These simple and practical transition-metal-free reactions afford ultra-pure (i.e. dry and solvent-free) CO at moderate temperatures and the byproduct diarylamines are recycled as pure compounds. In the absence of catalysts, diarylformamides 1 and 9 are long-term stable at > 200 ºC.  DFT-calculations indicate a reaction pathway with a rate-determining deprotonation of Ph2NC(O)H and a barrier-free CO elimination from Ph2NC(O)-.

2.
Angew Chem Int Ed Engl ; : e202408422, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818668

ABSTRACT

Attempts to create a novel Mg-Be bond by reaction of [(DIPePBDI*)MgNa]2 with Be[N(SiMe3)2]2 failed; DIPePBDI* = HC[(tBu)C=N(DIPeP)]2, DIPeP = 2,6-Et2C-phenyl. Even at elevated temperatures, no conversion was observed. This is likely caused by strong steric shielding of the Be center. A similar reaction with the more open Cp*BeCl gave in quantitative yield (DIPePBDI)MgBeCp* (1). The crystal structure shows a Mg-Be bond of 2.469(4) Å. Homolytic cleavage of the Mg-Be bond requires ΔH = 69.6 kcal mol-1 (cf. CpBe-BeCp 69.0 kcal mol-1 and (DIPPBDI)Mg-Mg(DIPPBDI) 55.8 kcal mol-1). Natural-Population-Analysis (NPA) shows fragment charges: (DIPePBDI*)Mg +0.27 / BeCp* -0.27. The very low NPA charge on Be (+0.62) compared to Mg (+1.21) and the strongly upfield 9Be NMR signal at -23.7 ppm are in line with considerable electron density on Be and the formal oxidation state assignment of MgII-Be0. Despite this Mgδ+-Beδ- polarity, 1 is extremely thermally stable and unreactive towards H2, CO, N2, cyclohexene and carbodiimide. It reacted with benzophenone, azobenzene, phenyl acetylene, CO2 and CS2. Reaction with 1-adamantyl azide led to reductive coupling and formation of an N6-chain. The azide reagent also inserted in the Cp*-Be bond. The inertness of 1 is likely due to bulky ligands protecting the Mg-Be unit.

3.
Chem Sci ; 15(12): 4386-4395, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516089

ABSTRACT

Sterically hindered amide anions have found widespread application as deprotonation agents or as ligands to stabilize metals in unusual coordination geometries or oxidation states. The use of bulky amides has also been advantageous in catalyst design. Herein we present s-block metal chemistry with one of the bulkiest known amide ligands: (tBu3Si)2N- (abbreviated: tBuN-). The parent amine (tBuNH), introduced earlier by Wiberg, is extremely resistant to deprotonation (even with nBuLi/KOtBu superbases) but can be deprotonated slowly with a blue Cs+/e- electride formed by addition of Cs0 to THF. (tBuN)Cs crystallized as a separated ion-pair, even without cocrystallized solvent. As salt-metathesis reactions with (tBuN)Cs are sluggish and incomplete, it has only limited use as an amide transfer reagent. However, ball-milling with LiI led to quantitative formation of (tBuN)Li and CsI. Structural characterization shows that (tBuN)Li is a monomeric contact ion-pair with a relatively short N-Li bond, an unusual T-shaped coordination geometry around N and extremely short Li⋯Me anagostic interactions. Crystal structures are compared with Li and Cs complexes of less bulky amide ligands (iPr3Si)2N- (iPrN-) and (Me3Si)2N- (MeN-). DFT calculations show trends in the geometries and electron distributions of amide ligands of increasing steric bulk (MeN- < iPrN- < tBuN-) and confirm that tBuN- is a rare example of a halogen-free weakly coordinating anion.

4.
Chemistry ; 30(30): e202400715, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38501797

ABSTRACT

The chemistry of extremely bulky amide ligands is troubled by difficulties in deprotonation of the parent amine. As an alternative route to superbulky amide reagents, the addition of polar reagents to a sila-imine has been investigated. Attempts to synthesize the superbulky amide anion (tBu3Si)2N- by addition of tBuLi to tBu2Si=N(SitBu3) failed and gave tBu3Si(tBu2HSi)NLi and isobutene. Reaction of the sila-imine with KOtBu successfully led to tBu3Si[tBu2(tBuO)Si]NK which crystallized as a separated ion-pair. Reaction with the slightly bulkier KOAd (Ad=1-adamantyl) led in presence of THF to ether ring-opening. Reaction with tBuOH gave tBu3Si[tBu2(tBuO)Si]NH but this amine cannot be easily deprotonated. Reaction with (BDI*)MgnBu in presence of THF gave (BDI*)Mg+ ⋅ (THF)2 and the non-coordinating anion tBu3Si[tBu2(nBu)Si]N-; BDI*=ß-diketiminate ligand HC[C(tBu)N-DIPP]2, DIPP=2,6-diisopropylphenyl. Reaction of Mg(nBu)2 with tBu2Si=N(SitBu3) led to a Mg complex with one amide ligand: tBu3Si[tBu2(nBu)Si]N-. The other superbulky amide anion isomerized by internal deprotonation of a tBu-substituent to give a primary carbanion that is also coordinated to Mg. Although the amide-to-carbanion isomerization is highly contrathermodynamic, it allows for coordination of both anions to a single Mg center. The new bulky amides are rare cases of halogen-free weakly coordinating anions.

SELECTION OF CITATIONS
SEARCH DETAIL
...