Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 2440, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38286830

ABSTRACT

Geophysics aims to locate bodies with varying density. We discovered an innovative approach for estimation of the location, in particular depth of a causative body, based on its relative horizontal dimensions, using a dimensionality indicator (I). The method divides the causative bodies into two types based on their horizontal spread: line of poles and point pole (LOP-PP) category, and line of poles and plane of poles (LOP-POP) category; such division allows for two distinct solutions. The method's depth estimate relates to the relative variations of the causative body's horizontal extent and leads to the solutions of the Euler Deconvolution method in specific cases. For causative bodies with limited and small depth extent, the estimated depth (z^0) corresponds to the center of mass, while for those with a large depth extent, z^0 relates to the center of top surface. Both the depth extent and the dimensionality of the causative body influence the depth estimates. As the depth extent increases, the influence of I on the estimated depth is more pronounced. Furthermore, the behavior of z^0 exhibits lower errors for larger values of I in LOP-POP solutions compared with LOP-PP solutions. We tested several specific model scenarios, including isolated and interfering sources with and without artificial noise. We also tested our approach on real lunar data containing two substantial linear structures and their surrounding impact basins and compared our results with the Euler deconvolution method. The lunar results align well with geology, supporting the effectiveness of this approach. The only assumption in this method is that we should choose between whether the gravity signal originates from a body within the LOP-PP category or the LOP-POP category. The depth estimation requires just one data point. Moreover, the method excels in accurately estimating the depth of anomalous causative bodies across a broad spectrum of dimensionality, from 2 to 3D. Furthermore, this approach is mathematically straightforward and reliable. As a result, it provides an efficient means of depth estimation for anomalous bodies, delivering insights into subsurface structures applicable in both planetary and engineering domains.

2.
Sci Rep ; 13(1): 12868, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553513

ABSTRACT

The parent impact crater of Australasian tektites has not been discovered so far, but a consensus has been accepted on its location in a wider area of Indochina. Recently, an alternative location has been suggested in the Badain Jaran Desert (BJD), Northwest China. Employing gravity and magnetic data derived from satellites, possible presence of an impact structure in BJD is investigated. The gravity parameters include the free air gravity disturbance, its vertical derivative component and total horizontal gradient (THG), strike alignment (SA), and Bouguer anomaly with its first vertical derivative and tilt angle. The magnetic parameters include the anomalous total magnetic field (TMF), its reduced to the pole transformation (RTP), the first vertical derivative of the TMF vertical component (Bzz), tilt angle (TA), and logistic total horizontal gradient (LTHG). Both the gravity and magnetic indicators support the presence of the impact structure. Gravity parameters display typical annular gravity highs circumscribing a gravity low. SA analysis reveals preferred parallel directions, implying the susceptibility of special zones to the impact shock waves, both within and beyond the rim. TMF reveals a large magnetic anomaly in the southern part of the proposed crater, and RTP displaces and restricts it further into the rim. Bzz weakens the long wavelength anomalies, amplifies the superficial ones, and separates them horizontally. TA and LTHG delineate the deep-seated and shallow magnetic signals related to the peak and border magnetization, respectively.

3.
Sci Rep ; 13(1): 12259, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37507435

ABSTRACT

We probe the gravitational properties of two neighboring planets, Earth and Venus. To justify a comparison between gravity models of the two planets, spherical harmonic series were considered up to a degree and order of 100. The topography and gravity aspects, including [Formula: see text] (vertical derivative of the vertical component of the gravity field), strike alignment (SA), comb factor (CF), and I2 invariant derived from the Marussi tensor, were calculated for the two planets at specifically selected zones that provided sufficient resolution. From Γzz we discovered that the N-NW edge of Lakshmi Planum does not show any subduction-like features. Its Γzz signature resembles passive continental margins on Earth, like those surrounding the Indian Peninsula. Moreover, according to SA and CF, the Pacific and Philippine-North American Contact Zone on Earth indicates significantly higher level of deformation due to convergent motion of the plates, whereas the deformation level on Venus is significantly smaller and local, when considering an equatorial rifting zone (ERZ) of Venus (between Atla-Beta Regios) as diverging boundaries. The strain mode on the East African Rift system is smaller in comparison with ERZ as its Venusian analog. The topography-I2 analysis suggests a complicated nature of the topographic rise on Beta Regio. We show that specific regions in this volcanic rise are in incipient stages of upward motion, with denser mantle material approaching the surface and thinning the crust, whereas some risen districts show molten and less dense underlying crustal materials. Other elevated districts appear to be due to mantle plumes and local volcanic activities with large density of underlying material.

5.
Sci Adv ; 9(8): eadd1467, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36827375

ABSTRACT

Antarctic bottom water (AABW) production is a key factor governing global ocean circulation, and the present disintegration of the Antarctic Ice Sheet slows it. However, its long-term variability has not been well documented. On the basis of high-resolution chemical scanning of a well-dated marine ferromanganese nodule from the eastern Pacific, we derive a record of abyssal ventilation spanning the past 4.7 million years and evaluate its linkage to AABW formation over this period. We find that abyssal ventilation was relatively weak in the early Pliocene and persistently intensified from 3.4 million years ago onward. Seven episodes of markedly reduced ocean ventilation indicative of AABW formation collapse are identified since the late Pliocene, which were accompanied by key stages of Northern Hemisphere glaciation. We suggest that the interpolar climate synchronization within these inferred seven collapse events may have intensified global glaciation by inducing poleward moisture transport in the Northern Hemisphere.

6.
Sci Rep ; 12(1): 4501, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35296705

ABSTRACT

Our Moon periodically moves through the magnetic tail of the Earth that contains terrestrial ions of hydrogen and oxygen. A possible density contrast might have been discovered that could be consistent with the presence of water phase of potential terrestrial origin. Using novel gravity aspects (descriptors) derived from harmonic potential coefficients of gravity field of the Moon, we discovered gravity strike angle anomalies that point to water phase locations in the polar regions of the Moon. Our analysis suggests that impact cratering processes were responsible for specific pore space network that were subsequently filled with the water phase filling volumes of permafrost in the lunar subsurface. In this work, we suggest the accumulation of up to ~ 3000 km3 of terrestrial water phase (Earth's atmospheric escape) now filling the pore spaced regolith, portion of which is distributed along impact zones of the polar regions of the Moon. These unique locations serve as potential resource utilization sites for future landing exploration and habitats (e.g., NASA Artemis Plan objectives).


Subject(s)
Moon , Water , Earth, Planet , Extraterrestrial Environment , Gravitation
8.
Sci Rep ; 11(1): 22466, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34789763

ABSTRACT

The shock exposure of the Santa Fe's impact structure in New Mexico is evidenced by large human-size shatter cones. We discovered a new magnetic mechanism that allows a magnetic detection of plasma's presence during the impact processes. Rock fragments from the impactites were once magnetized by a geomagnetic field. Our novel approach, based on Neel's theory, revealed more than an order of magnitude lower magnetizations in the rocks that were exposed to the shockwave. Here we present a support for a newly proposed mechanism where the shock wave appearance can generate magnetic shielding that allow keeping the magnetic grains in a superparamagnetic-like state shortly after the shock's exposure, and leaves the individual magnetized grains in random orientations, significantly lowering the overall magnetic intensity. Our data not only clarify how an impact process allows for a reduction of magnetic paleointensity but also inspire a new direction of effort to study impact sites, using paleointensity reduction as a new impact proxy.

9.
Sci Rep ; 11(1): 18632, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34545151

ABSTRACT

We present evidence that in ~ 1650 BCE (~ 3600 years ago), a cosmic airburst destroyed Tall el-Hammam, a Middle-Bronze-Age city in the southern Jordan Valley northeast of the Dead Sea. The proposed airburst was larger than the 1908 explosion over Tunguska, Russia, where a ~ 50-m-wide bolide detonated with ~ 1000× more energy than the Hiroshima atomic bomb. A city-wide ~ 1.5-m-thick carbon-and-ash-rich destruction layer contains peak concentrations of shocked quartz (~ 5-10 GPa); melted pottery and mudbricks; diamond-like carbon; soot; Fe- and Si-rich spherules; CaCO3 spherules from melted plaster; and melted platinum, iridium, nickel, gold, silver, zircon, chromite, and quartz. Heating experiments indicate temperatures exceeded 2000 °C. Amid city-side devastation, the airburst demolished 12+ m of the 4-to-5-story palace complex and the massive 4-m-thick mudbrick rampart, while causing extreme disarticulation and skeletal fragmentation in nearby humans. An airburst-related influx of salt (~ 4 wt.%) produced hypersalinity, inhibited agriculture, and caused a ~ 300-600-year-long abandonment of ~ 120 regional settlements within a > 25-km radius. Tall el-Hammam may be the second oldest city/town destroyed by a cosmic airburst/impact, after Abu Hureyra, Syria, and possibly the earliest site with an oral tradition that was written down (Genesis). Tunguska-scale airbursts can devastate entire cities/regions and thus, pose a severe modern-day hazard.

11.
Sci Rep ; 11(1): 714, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436793

ABSTRACT

Geomagnetic fields interfere with the accumulation of iron in the human brain. Magnetic sensing of the human brain provides compelling evidence of new electric mechanisms in human brains and may interfere with the evolution of neurodegenerative diseases. We revealed that the human brain may have a unique susceptibility to conduct electric currents as feedback of magnetic dipole fluctuation in superparamagnetic grains. These grains accumulate and grow with brain aging. The electric feedback creates an electronic noise background that depends on geomagnetic field intensity and may compromise functional stability of the human brain, while induced currents are spontaneously generated near superparamagnetic grains. Grain growth due to an increase of iron mobility resulted in magnetic remanence enhancement during the final years of the studied brains.


Subject(s)
Brain/pathology , Iron/metabolism , Magnetic Phenomena , Neurodegenerative Diseases/pathology , Aged , Aged, 80 and over , Brain/metabolism , Female , Humans , Iron/analysis , Male , Middle Aged , Neurodegenerative Diseases/metabolism
12.
Sci Rep ; 10(1): 9035, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32493963

ABSTRACT

Chicxulub impact (66 Ma) event resulted in deposition of spheroids and melt glass, followed by deposition of diamectite and carbonate ejecta represented by large polished striated rounded pebbles and cobbles, henceforth, called Albion Formation1 Pook's Pebbles, name given from the first site identified in central Belize, Cayo District. Here we report that magnetic analysis of the Pook's Pebbles samples revealed unique electric discharge signatures. Sectioning of Pook's Pebbles from the Chicxulub ejecta from the Albion Formation at Belize showed that different parts of Pook's Pebbles had not only contrasting magnetization directions, but also sharply different level of magnetizations. Such behavior is indicative of electric discharge taking place sometimes during the formation of the Chicxulub ejecta blanket. In addition, some of the Pook's Pebbles' surface had recrystallized down to 0.2 mm depth. This is evidence of localized extreme pressures and temperatures during the fluidized ejecta formation which was imprinted in the outer layer of Pook's Pebbles. Recrystallization caused formation of nanophase iron along the surface, which was revealed by mapping of both natural remanent magnetization and of saturation remanence magnetization signatures. While the spheroids' magnetization orientation is consistent with reversed magnetic field at the time of impact, the study of the Pook's Pebbles provided, in addition, new evidence of electric charging during the vapor plume cloud processes.

13.
Sci Rep ; 10(1): 6093, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32269264

ABSTRACT

We provide arguments in favour of impact origin of a 200 km suspected impact crater Kotuykanskaya near Popigai, Siberia, Russia. We use the gravity aspects (gravity disturbances, the Marussi tensor of the second derivatives of the disturbing geopotential, the gravity invariants and their specific ratio, the strike angles and the virtual deformations), all derived from the combined static gravity field model EIGEN 6C4, with the ground resolution of about 10 km and a precision of about 10 milliGals. We also use the magnetic anomalies from the model EMAG2 and emphasize the evidence of much deeper sources in the suspected area, constraining the impact origin of this structure.

14.
Sci Rep ; 10(1): 4185, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32144395

ABSTRACT

At Abu Hureyra (AH), Syria, the 12,800-year-old Younger Dryas boundary layer (YDB) contains peak abundances in meltglass, nanodiamonds, microspherules, and charcoal. AH meltglass comprises 1.6 wt.% of bulk sediment, and crossed polarizers indicate that the meltglass is isotropic. High YDB concentrations of iridium, platinum, nickel, and cobalt suggest mixing of melted local sediment with small quantities of meteoritic material. Approximately 40% of AH glass display carbon-infused, siliceous plant imprints that laboratory experiments show formed at a minimum of 1200°-1300 °C; however, reflectance-inferred temperatures for the encapsulated carbon were lower by up to 1000 °C. Alternately, melted grains of quartz, chromferide, and magnetite in AH glass suggest exposure to minimum temperatures of 1720 °C ranging to >2200 °C. This argues against formation of AH meltglass in thatched hut fires at 1100°-1200 °C, and low values of remanent magnetism indicate the meltglass was not created by lightning. Low meltglass water content (0.02-0.05% H2O) is consistent with a formation process similar to that of tektites and inconsistent with volcanism and anthropogenesis. The wide range of evidence supports the hypothesis that a cosmic event occurred at Abu Hureyra ~12,800 years ago, coeval with impacts that deposited high-temperature meltglass, melted microspherules, and/or platinum at other YDB sites on four continents.

15.
Sci Rep ; 9(1): 2551, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30796318

ABSTRACT

Multiwall carbon nanotubes (MWCNTs) fabricated by chemical vapor deposition contain magnetic nanoparticles. While increasing frequency of electromagnetic field (EMF) exposure (up to <10 kHz) of MWCNTs resulted in slight induced magnetization decrease due to skin effect of the conducting carbon, we discovered that higher frequencies (>10 kHz) contained an exponential magnetization increase. We show that puzzling magnetization increase with decreasing magnetic field amplitude (less than 0.5 A/m for 512 kHz) is due to matching the field amplitudes of the magnetic nanoparticles inside nanotubes. This observation reveals a possibility of magnetic tunneling in MWCNTs (change of magnetic state of blocked magnetic moments). This interpretation is supported by observation of unblocking larger magnetic remanence (MR) portion from MWCNTs with progressively smaller amplitude of oscillating magnetic field.

16.
Nanotechnology ; 27(11): 115701, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26871413

ABSTRACT

Multi-walled carbon nanotube (CNT) structures, including unidirectionally aligned sheets and spun yarns, were fabricated by direct dry-spinning methods from spinnable CNT arrays. We improved the mechanical properties of the CNT structures. CNTs were tailored in sheets and yarns using perfluorophenyl azide (PFPA) as a binding agent. The azide group of PFPA bonds to graphene crystal surfaces under UV radiation exposed for 1 h. For the CNT sheet, Young's modulus increased from 1.6 to 32.9 GPa and tensile strength increased from 35.9 MPa to 144.5 MPa. For the CNT yarns Young's modulus increased from 29.5 to 78.0 GPa and tensile strength increased from 639.1 to 675.6 MPa. With this treatment, the CNT sheets became more robust and more flexible materials. Since cross-linking of CNTs by PFPA is a simple and rapid process, it is suitable for fabrication of enhanced CNT materials.

17.
Biores Open Access ; 4(1): 209-17, 2015.
Article in English | MEDLINE | ID: mdl-26309797

ABSTRACT

Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs.

18.
Rejuvenation Res ; 17(2): 226-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24713060

ABSTRACT

Pulses up to 11 Tesla magnetic fields may generate pockets of currents along the walls of cellular material and may interfere with the overall ability of cell division. We used prokaryotic cells (Escherichia coli) and eukaryotic cells (murine fibroblasts) and exposed them to magnetic pulses of intensities ranging from 1 millitesla (mT) to 11,000 mT. We found prokaryotic cells to be more sensitive to magnetic field pulses than eukaryotic cells.


Subject(s)
Electricity , Electromagnetic Fields , Escherichia coli/cytology , Fibroblasts/cytology , Animals , Cell Line , Cell Proliferation , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...