Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 233(4): 1657-1666, 2022 02.
Article in English | MEDLINE | ID: mdl-34843111

ABSTRACT

The prevalence of local adaptation and phenotypic plasticity among populations is critical to accurately predicting when and where climate change impacts will occur. Currently, comparisons of thermal performance between populations are untested for most marine species or overlooked by models predicting the thermal sensitivity of species to extirpation. Here we compared the ecological response and recovery of seagrass populations (Posidonia oceanica) to thermal stress throughout a year-long translocation experiment across a 2800-km gradient in ocean climate. Transplants in central and warm-edge locations experienced temperatures > 29°C, representing thermal anomalies > 5°C above long-term maxima for cool-edge populations, 1.5°C for central and < 1°C for warm-edge populations. Cool-edge, central and warm-edge populations differed in thermal performance when grown under common conditions, but patterns contrasted with expectations based on thermal geography. Cool-edge populations did not differ from warm-edge populations under common conditions and performed significantly better than central populations in growth and survival. Our findings reveal that thermal performance does not necessarily reflect the thermal geography of a species. We demonstrate that warm-edge populations can be less sensitive to thermal stress than cooler, central populations suggesting that Mediterranean seagrasses have greater resilience to warming than current paradigms suggest.


Subject(s)
Alismatales , Ecosystem , Acclimatization , Climate Change , Oceans and Seas , Temperature
2.
J Fish Biol ; 100(2): 574-581, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34874571

ABSTRACT

The lionfish Pterois miles invaded the Mediterranean Sea in 2012 and spread fast to the entire eastern basin. This study provides evidence of successful spawning and the first detailed analysis of P. miles ovarian dynamics in the Mediterranean Sea. The ovarian reproductive phases of mature females collected from Cyprus (eastern Mediterranean) between September 2017 and August 2018 were analysed, both macroscopically and histologically. The results suggested a prolonged oocyte recruitment and development season, and a spawning season that primarily occurred during summertime, even though spawning-capable females were caught also in autumn. A year-round spawning activity may have been inhibited due to seasonal variations in water temperature. Multiple oocyte developmental stages co-occurred in females at different reproductive phases, indicating that more than one oocyte batches were released per spawning season. The analysis of the spawning batch formation enabled the batch fecundity estimation at 3225-63149 oocytes. The oocyte development pattern described in this study shared characteristics with the indeterminate fecundity type, where new oocytes are recruited to the secondary growth phase in parallel with spawning activity. Climate change is likely to extend the spawning season of lionfish in the Mediterranean Sea and further favour its invasion. The information provided in this study is vital for the design of strategic and effective management plans to restrain the expansion of this highly invasive fish.


Subject(s)
Perciformes , Reproduction , Animals , Female , Fertility , Fishes , Mediterranean Sea
3.
J Environ Manage ; 280: 111690, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33246748

ABSTRACT

Marine ecosystems are undergoing major transformations due to the establishment and spread of Non-Indigenous Species (NIS). Some of these organisms have adverse effects, for example by reducing biodiversity and causing ecosystem shifts. Others have upsides, such as benefits to fisheries or replacing lost ecological functions and strengthening biogenic complexity. Stopping the spread of NIS is virtually impossible and so the societal challenge is how to limit the socioeconomic, health, and ecological risks, and sustainably exploit the benefits provided by these organisms. We propose a move away from the notion that NIS have only negative effects, and suggest a turn towards an Ecosystem-Based Fishery Management approach for NIS (EBFM-NIS) in the Mediterranean Sea, the world's most invaded marine region. A structured, iterative, and adaptive framework that considers the range of costs and benefits to ecosystems, ecosystem services, and fisheries is set out to determine whether NIS stocks should be managed using sustainable or unsustainable exploitation. We propose fishery reforms such as multiannual plans, annual catch limits, technical measures for sustainable exploitation, and legitimization of unlimited fishing of selected NIS and introduction of a radical new license for NIS fishing for unsustainable exploitation. Depending on local conditions, investment strategies can be included within the EBFM-NIS framework to protect/enhance natural assets to improve ecosystem resilience against NIS, as well as fishery assets to improve the performance of NIS fisheries. Examples of the former include the enhancement of Marine Protected Areas, harvesting of invasive NIS within MPAs, and protection of overfished predators and key species. Examples of the latter include market promotion and valorisation of NIS products, development of novel NIS products, and innovative/alternative NIS fishing such as fishery-related tourism ('pescatourism'). The application of the suggested EBFM-NIS would create jobs, protect and enhance ecosystem services, and help to meet the United Nations Sustainable Development Goal 14: Conserve and sustainably use the oceans, seas, and marine resources for sustainable development.


Subject(s)
Ecosystem , Fisheries , Animals , Biodiversity , Conservation of Natural Resources , Fishes , Mediterranean Sea
4.
J Fish Biol ; 97(1): 148-162, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32249927

ABSTRACT

The lionfish, Pterois miles, is one of the most recent Lessepsian immigrants into the Mediterranean Sea, and it poses a serious threat to marine ecosystems in the region. This study assesses the basic biology and ecology of lionfish in the Mediterranean, examining morphometrics, reproduction and diet as well as population structure and distribution. The population density of lionfish has increased dramatically in Cyprus since the first sighting in late 2012; by 2018 aggregations of up to 70 lionfish were found on rocky grounds with complex reefs and artificial reefs in depths of 0-50 m. Lionfish in Cyprus become mature within a year, and adults are capable of spawning year-round, with peak spawning in summer when the sea-surface temperature reaches 28.4°C. The Cypriot lionfish grow faster and bigger than in their native range, and females are more common than males. Lionfish are generalist predators in these waters, as also found in their native range, consuming a range of teleost and crustacean prey, some of which are of high economic value (e.g., Spicara smaris and Sparisoma cretense) or have an important role in local trophic webs (e.g., Chromis chromis). Overall, the reproductive patterns, the presence of juveniles and adults throughout the year, the rapid growth rates and the generalist diet indicate that lionfish are thriving and are now already well established in the region and could potentially become the serious nuisance that they are in their temperate and tropical western Atlantic-invasive range.


Subject(s)
Ecosystem , Fishes/physiology , Introduced Species , Animals , Diet , Female , Male , Mediterranean Sea , Population Density , Reproduction , Seasons
5.
Mar Environ Res ; 140: 221-233, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30251646

ABSTRACT

Finfish aquaculture has damaged seagrass meadows worldwide as wastes from the farms can kill these habitat-forming plants. In Cyprus, the Mediterranean endemic Posidonia oceanica is at its upper thermal limits yet forms extensive meadows all around the island. Understanding this under-studied isolated population may be important for the long-term survival of the species given that the region is warming rapidly. When fish farming began around Cyprus in the mid-nineties, cages were moored above seagrass beds, but as production expanded they were moved into deeper water further away from the meadows. Here, we monitored the deepest edge of meadows near fish farms that had been moved into deeper waters as well as at a decommissioned farm site. Four P. oceanica monitoring systems were set up using methods developed by the Posidonia Monitoring Network. Seagrass % coverage, shoot density, % of plagiotropic rhizomes, shoot exposure, leaf morphometry, and sediment organic matter content and grain size were monitored at 11 fixed plots within each system, in 2012-2014 and in 2017. Expansion at the lower depth limit of seagrass meadows was recorded at all monitoring sites. Most other P. oceanica descriptors either did not change significantly or declined. Declines were most pronounced at a site that was far from mariculture activities but close to other anthropogenic pressures. The most important predictor affecting P. oceanica was depth. Monitoring using fixed plots allowed direct comparisons of descriptors over time, removes patchiness and intra-meadow variability increasing our understanding of seagrass dynamics and ecosystem integrity. It seems that moving fish farms away from P. oceanica has helped ensure meadow recovery at the deepest margins of their distribution, an important success story given that these meadows are at the upper thermal limits of the species.


Subject(s)
Alismatales , Fisheries , Animals , Fishes , Marine Biology , Mediterranean Sea
SELECTION OF CITATIONS
SEARCH DETAIL
...