Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1138666, 2023.
Article in English | MEDLINE | ID: mdl-37153764

ABSTRACT

Background: Insomnia is associated with psychiatric illnesses such as bipolar disorder or schizophrenia. Treating insomnia improves psychotic symptoms severity, quality of life, and functional outcomes. Patients with psychiatric disorders are often dissatisfied with the available therapeutic options for their insomnia. In contrast, positive allosteric modulation of adenosine A2A receptors (A2ARs) leads to slow-wave sleep without cardiovascular side effects in contrast to A2AR agonists. Methods: We investigated the hypnotic effects of A2AR positive allosteric modulators (PAMs) in mice with mania-like behavior produced by ablating GABAergic neurons in the ventral medial midbrain/pons area and in a mouse model of schizophrenia by knocking out of microtubule-associated protein 6. We also compared the properties of sleep induced by A2AR PAMs in mice with mania-like behavior with those induced by DORA-22, a dual orexin receptor antagonist that improves sleep in pre-clinical models, and the benzodiazepine diazepam. Results: A2AR PAMs suppress insomnia associated with mania- or schizophrenia-like behaviors in mice. A2AR PAM-mediated suppression of insomnia in mice with mania-like behavior was similar to that mediated by DORA-22, and, unlike diazepam, did not result in abnormal sleep. Conclusion: A2AR allosteric modulation may represent a new therapeutic avenue for sleep disruption associated with bipolar disorder or psychosis.

2.
Nature ; 558(7710): 435-439, 2018 06.
Article in English | MEDLINE | ID: mdl-29899451

ABSTRACT

Sleep and wake have global effects on brain physiology, from molecular changes1-4 and neuronal activities to synaptic plasticity3-7. Sleep-wake homeostasis is maintained by the generation of a sleep need that accumulates during waking and dissipates during sleep8-11. Here we investigate the molecular basis of sleep need using quantitative phosphoproteomic analysis of the sleep-deprived and Sleepy mouse models of increased sleep need. Sleep deprivation induces cumulative phosphorylation of the brain proteome, which dissipates during sleep. Sleepy mice, owing to a gain-of-function mutation in the Sik3 gene 12 , have a constitutively high sleep need despite increased sleep amount. The brain proteome of these mice exhibits hyperphosphorylation, similar to that seen in the brain of sleep-deprived mice. Comparison of the two models identifies 80 mostly synaptic sleep-need-index phosphoproteins (SNIPPs), in which phosphorylation states closely parallel changes of sleep need. SLEEPY, the mutant SIK3 protein, preferentially associates with and phosphorylates SNIPPs. Inhibition of SIK3 activity reduces phosphorylation of SNIPPs and slow wave activity during non-rapid-eye-movement sleep, the best known measurable index of sleep need, in both Sleepy mice and sleep-deprived wild-type mice. Our results suggest that phosphorylation of SNIPPs accumulates and dissipates in relation to sleep need, and therefore SNIPP phosphorylation is a molecular signature of sleep need. Whereas waking encodes memories by potentiating synapses, sleep consolidates memories and restores synaptic homeostasis by globally downscaling excitatory synapses4-6. Thus, the phosphorylation-dephosphorylation cycle of SNIPPs may represent a major regulatory mechanism that underlies both synaptic homeostasis and sleep-wake homeostasis.


Subject(s)
Brain/metabolism , Homeostasis , Phosphoproteins/analysis , Phosphoproteins/metabolism , Proteome/analysis , Proteomics , Sleep/physiology , Animals , Brain/physiology , Gain of Function Mutation , Male , Memory Consolidation/physiology , Mice , Mice, Inbred C57BL , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proteome/metabolism , Sleep Deprivation/metabolism , Sleep Deprivation/physiopathology , Synapses/physiology , Wakefulness/physiology
3.
Nat Commun ; 9(1): 2041, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29795268

ABSTRACT

Innate behaviors are genetically encoded, but their underlying molecular mechanisms remain largely unknown. Predator odor 2,4,5-trimethyl-3-thiazoline (TMT) and its potent analog 2-methyl-2-thiazoline (2MT) are believed to activate specific odorant receptors to elicit innate fear/defensive behaviors in naive mice. Here, we conduct a large-scale recessive genetics screen of ethylnitrosourea (ENU)-mutagenized mice. We find that loss of Trpa1, a pungency/irritancy receptor, diminishes TMT/2MT and snake skin-evoked innate fear/defensive responses. Accordingly, Trpa1 -/- mice fail to effectively activate known fear/stress brain centers upon 2MT exposure, despite their apparent ability to smell and learn to fear 2MT. Moreover, Trpa1 acts as a chemosensor for 2MT/TMT and Trpa1-expressing trigeminal ganglion neurons contribute critically to 2MT-evoked freezing. Our results indicate that Trpa1-mediated nociception plays a crucial role in predator odor-evoked innate fear/defensive behaviors. The work establishes the first forward genetics screen to uncover the molecular mechanism of innate fear, a basic emotion and evolutionarily conserved survival mechanism.


Subject(s)
Behavior, Animal/physiology , Fear/physiology , Instinct , Smell/physiology , TRPA1 Cation Channel/physiology , Animals , Female , Genotyping Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis , Neurons/physiology , Nociception/physiology , Odorants , Thiazoles/chemistry , Trigeminal Ganglion/cytology , Trigeminal Ganglion/physiology
4.
Carcinogenesis ; 31(8): 1465-74, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20530553

ABSTRACT

The Rip1Tag2 transgenic mouse model of pancreatic beta-cell carcinogenesis has been instrumental in identifying several hallmarks of cancer, including tumor cell evasion from apoptosis, tumor angiogenesis and tumor invasion. Moreover, Rip1Tag2 mice have been helpful in the development and testing of innovative cancer therapies and tumor imaging protocols. However, based on tumor localization in the mouse, primary tumor growth and metastatic dissemination cannot be easily monitored in a longitudinal axis by non-invasive and low-technology approaches. Here, we report the generation of a new transgenic mouse line as a versatile tool to study beta-cell carcinogenesis. Transgenic expression of a bicistronic messenger RNA encoding simian virus large T antigen and firefly luciferase in pancreatic beta-cells recapitulates insulinoma development in a reproducible multistage process. In the mouse line called RipTag-IRES-Luciferase line (RTL) 1, the beta-cell-specific expression of luciferase allows the non-invasive monitoring of primary tumor growth over time in vivo and the detection and quantification of disseminated tumor cells and micrometastases in distant organs ex vivo. When crossed to mouse lines in which the expression of cancer 'modifier' genes has been manipulated, tumor initiation and tumor progression are similarly affected as previously reported for Rip1Tag2 mice, indicating a robust tumor progression pathway shared between the two different transgenic mouse lines. Together, the data indicate that the RTL1 mouse line will be of great value to study anti-tumoral therapeutic approaches as well as to define the functional roles of cancer- and metastasis-related genes when crossed to appropriate transgenic or gene-targeted mouse lines.


Subject(s)
Carcinoma, Islet Cell/pathology , Insulin-Secreting Cells/pathology , Pancreatic Neoplasms/pathology , Animals , Apoptosis , Cell Division , Cell Line, Tumor , Disease Models, Animal , Insulin-Secreting Cells/enzymology , Luciferases/genetics , Luciferases/metabolism , Luminescence , Mice , Mice, Transgenic , Neoplasm Metastasis/pathology , RNA/genetics , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...