Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Insect Sci ; 3: 1141853, 2023.
Article in English | MEDLINE | ID: mdl-38469503

ABSTRACT

The invasion of Drosophila suzukii, spotted-wing drosophila, across Europe and the US has led to economic losses for berry and cherry growers, and increased insecticide applications to protect fruit from damage. Commercial production relies heavily on unsustainable use of conventional toxic insecticides. Non-toxic insecticide strategies are necessary to alleviate the disadvantages and non-target impacts of toxic conventional insecticides and improve Integrated Pest Management (IPM). A novel food-grade gum deployed on dispenser pads (GUM dispensers) was evaluated to mitigate D. suzukii crop damage in five commercial crops and nine locations. Trials were conducted at a rate of 124 dispensers per hectare in cherry, wine grape, blueberry, raspberry, and blackberry in California and Oregon, USA during 2019 and 2020. The majority of trials with the food-grade gum resulted in a reduction of D. suzukii egg laying in susceptible fruit. In some cases, such damage was reduced by up to 78%. Overall, results from our meta-analysis showed highly significant differences between GUM treatments and the untreated control. Modeling simulations suggest a synergistic reduction of D. suzukii damage when used in combination with Spinosad (Entrust SC) insecticide. These data illustrate commercial value of this tool as a sustainable alternative to manage D. suzukii populations within a systems approach.

2.
J Econ Entomol ; 114(5): 1950-1974, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34516634

ABSTRACT

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) also known as spotted-wing drosophila (SWD), is a pest native to Southeast Asia. In the last few decades, the pest has expanded its range to affect all major European and American fruit production regions. SWD is a highly adaptive insect that is able to disperse, survive, and flourish under a range of environmental conditions. Infestation by SWD generates both direct and indirect economic impacts through yield losses, shorter shelf life of infested fruit, and increased production costs. Fresh markets, frozen berries, and fruit export programs have been impacted by the pest due to zero tolerance for fruit infestation. As SWD control programs rely heavily on insecticides, exceedance of maximum residue levels (MRLs) has also resulted in crop rejections. The economic impact of SWD has been particularly severe for organic operations, mainly due to the limited availability of effective insecticides. Integrated pest management (IPM) of SWD could significantly reduce chemical inputs but would require substantial changes to horticultural management practices. This review evaluates the most promising methods studied as part of an IPM strategy against SWD across the world. For each of the considered techniques, the effectiveness, impact, sustainability, and stage of development are discussed.


Subject(s)
Drosophila , Insecticides , Animals , Fruit , Insect Control
3.
J Insect Sci ; 19(1)2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30624704

ABSTRACT

The invasion of the spotted wing drosophila, Drosophila suzukii Matsumura, across the Americas and Europe has led to increased insecticide applications to protect fruit crops. This insecticide usage conflicts with integrated pest management programs, as well as harvest, export, and pollination services in the affected crops. A novel management tool was assessed against D. suzukii that may mitigate these conflicts. HOOK SWD, an attract-and-kill (A&K) formulation applied as a sprayable bait, was evaluated for three growing seasons in two berry crops in New Jersey and California. In blueberry crops treated with HOOK SWD, fruit infestations by D. suzukii were 2-8 times lower than in untreated crops. In trials in commercial raspberry fields, weekly or biweekly HOOK SWD applications combined with a single grower standard D. suzukii-targeted cover spray resulted in nearly 2-5 times fewer fruit infestations compared to the grower standard cover spray alone. Assays of the residual activity of HOOK SWD resulted in more than 78-93% adult D. suzukii mortality when exposed to raspberry leaves after the formulation had aged for 35 d in the field under plastic hoop houses. These results suggest that this A&K strategy can be integrated in D. suzukii management programs.


Subject(s)
Drosophila , Insect Control , Pheromones , Animals , Blueberry Plants/growth & development , California , Crops, Agricultural/growth & development , Female , Fruit/growth & development , Insect Control/methods , Male , New Jersey , Rubus/growth & development
4.
Pest Manag Sci ; 67(11): 1375-85, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21800409

ABSTRACT

BACKGROUND: The spotted wing Drosophila, Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae), is an invasive pest of small-fruit crops. Unlike most other Drosophila, this insect is able to oviposit into and damage ripe and ripening fruit, making it unmarketable. Because this is a new pest in the United States, it is necessary to identify registered insecticides to manage this insect effectively in conventional and organic production systems. RESULTS: The present laboratory bioassays and field trials identified a number of insecticides representing various modes of action that are effective in controlling D. suzukii. Products that performed well in the laboratory bioassay also performed well in the field, indicating that screening of new chemistries in the laboratory is a worthy exercise. Field application of pyrethoids, organophosphates or spinosyns provided 5-14 days of residual control of D. suzukii. The efficacy of the neonicotinoids as adulticides was not satisfactory compared with the other contact-mode-of-action chemistries. Based on the zero tolerance by the small-fruit industry and the individual effects mentioned above, neonicotinoids are not currently recommended for D. suzukii management. CONCLUSIONS: There are effective insecticides registered for controlling D. suzukii infestations in susceptible small-fruit crops.


Subject(s)
Drosophila , Fruit , Insect Control/methods , Insecticides , Pest Control, Biological/methods , Agriculture , Animals , Crops, Agricultural , Female , Insect Control/instrumentation , Insecticide Resistance , Male , Organic Agriculture , Pacific States , Pest Control, Biological/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...