Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(9)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37760765

ABSTRACT

The aim of the presented study was to examine the in vitro antimicrobial activity of rutin hydrate (RH) alone and in combination with amikacin against 12 reference strains of Gram-positive and Gram-negative bacteria. The antibacterial activity assay was evaluated in the concentration range of 2-2048 µg/mL. A serial microdilution method was used to determine the minimal inhibitory concentration (MIC) of the examined compound against reference strains. RH showed varying potential against the tested strains with MICs ranging from 128 to 1024 µg/mL. In order to examine the combinatory profile of RH and amikacin, the fractional inhibitory concentrations (FICs) were determined. The RH-amikacin combination was more active against Gram-negative bacteria where four synergism and two additive interactions were noted. For four out of six Gram-positive isolates, an indifferent effect of RH and amikacin was demonstrated, and for two strains, the tested combination had an additive effect. The results of this study showed that RH possesses antimicrobial potential in vitro towards the tested reference isolates. Moreover, it shows a promising combined effect with amikacin against Gram-negative bacteria.

2.
Int J Mol Sci ; 21(19)2020 Oct 03.
Article in English | MEDLINE | ID: mdl-33022990

ABSTRACT

Dual drug-loaded nanotherapeutics can play an important role against the drug resistance and side effects of the single drugs. Doxorubicin and sorafenib were efficiently co-encapsulated by tailor-made poly([R,S]-3-hydroxybutyrate) (PHB) using an emulsion-solvent evaporation method. Subsequent poly(ethylene glycol) (PEG) conjugation onto nanoparticles was applied to make the nanocarriers stealth and to improve their drug release characteristics. Monodisperse PHB-sorafenib-doxorubicin nanoparticles had an average size of 199.3 nm, which was increased to 250.5 nm after PEGylation. The nanoparticle yield and encapsulation efficiencies of drugs decreased slightly in consequence of PEG conjugation. The drug release of the doxorubicin was beneficial, since it was liberated faster in a tumor-specific acidic environment than in blood plasma. The PEG attachment decelerated the release of both the doxorubicin and the sorafenib, however, the release of the latter drug remained still significantly faster with increased initial burst compared to doxorubicin. Nevertheless, the PEG-PHB copolymer showed more beneficial drug release kinetics in vitro in comparison with our recently developed PEGylated poly(lactic-co-glycolic acid) nanoparticles loaded with the same drugs.


Subject(s)
Colorectal Neoplasms/drug therapy , Doxorubicin/pharmacology , Nanoparticles/chemistry , Sorafenib/pharmacology , Colorectal Neoplasms/pathology , Doxorubicin/chemistry , Drug Carriers/chemistry , Drug Carriers/pharmacology , Drug Delivery Systems/methods , HCT116 Cells , Humans , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Prohibitins , Sorafenib/chemistry
3.
Materials (Basel) ; 13(9)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403315

ABSTRACT

The need for a cost reduction of the materials derived from (bio)degradable polymers forces research development into the formation of biocomposites with cheaper fillers. As additives can be made using the post-consumer wood, generated during wood products processing, re-use of recycled waste materials in the production of biocomposites can be an environmentally friendly way to minimalize and/or utilize the amount of the solid waste. Also, bioactive materials, which possess small amounts of antimicrobial additives belong to a very attractive packaging industry solution. This paper presents a study into the biodegradation, under laboratory composting conditions, of the composites that consist of poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate)] and wood flour as a polymer matrix and natural filler, respectively. Thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy were used to evaluate the degradation progress of the obtained composites with different amounts of wood flour. The degradation products were characterized by multistage electrospray ionization mass spectrometry. Also, preliminary tests of the antimicrobial activity of selected materials with the addition of nisin were performed. The obtained results suggest that the different amount of filler has a significant influence on the degradation profile.

4.
Polymers (Basel) ; 11(7)2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31336650

ABSTRACT

It was shown that selected sodium phenoxide derivatives with different basicity and nucleophilicity, such as sodium p-nitrophenoxide, p-chlorophenoxide, 1-napthoxide, phenoxide and p-methoxyphenoxide, are effective initiators in anionic ring-opening polymerization (AROP) of ß-butyrolactone in mild conditions. It was found that phenoxides as initiators in anionic ring-opening polymerization of ß-butyrolactone behave as strong nucleophiles, or weak nucleophiles, as well as Brønsted bases. The resulting polyesters possessing hydroxy, phenoxy and crotonate initial groups are formed respectively by the attack of phenoxide anion at (i) C2 followed by an elimination reaction with hydroxide formation, (ii) C4 and (iii) abstraction of acidic proton at C3. The obtained poly(3-hydroxybutyrate) possesses carboxylate growing species. The ratio of the observed initial groups strongly depends on the basicity and nucleophilicity of the sodium phenoxide derivative used as initiator. The proposed mechanism of this polymerization describes the reactions leading to formation of observed end groups. Moreover, the possibility of formation of a crotonate group during the propagation step of this polymerization is also discussed.

5.
Polymers (Basel) ; 11(3)2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30960531

ABSTRACT

The degree of degradation of pure poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] and its composites with cork incubated under industrial and laboratory composting conditions was investigated. The materials were parallelly incubated in distilled water at 70 °C as a reference experiment (abiotic condition). It was demonstrated that addition of the cork into polyester strongly affects the matrix crystallinity. It influences the composite degradation independently on the degradation environment. Moreover, the addition of the cork increases the thermal stability of the obtained composites; this was related to a smaller reduction in molar mass during processing. This phenomenon also had an influence on the composite degradation process. The obtained results suggest that the addition of cork as a natural filler in various mass ratios to the composites enables products with different life expectancies to be obtained.

6.
J Mech Behav Biomed Mater ; 81: 39-45, 2018 05.
Article in English | MEDLINE | ID: mdl-29482178

ABSTRACT

The semicrystalline poly(L-lactide) (PLLA) belongs to the materials with shape memory effect (SME) and as a bioresorbable and biocompatible polymer it have found many applications in medical and pharmaceutical field. Assessment of the SME impact on the polymer degradation profile plays crucial role in applications such as drug release systems or in regenerative medicine. Herein, the results of in vitro degradation studies of PLLA samples after SME full test cycle are presented. The samples were loaded and deformed in two manners: progressive and non-progressive. The performed experiments illustrate also influence of the material mechanical damages, caused e.g. during incorrect implantation of PLLA product, on hydrolytic degradation profile. Apparently, degradation profiles are significantly different for the material which was not subjected to the deformation and the deformed ones. The materials after deformation of 50% (in SME cycle) was characterized by non-reversible morphology changes. The effect was observed in deformed samples during the SME test which were carried out ten times.


Subject(s)
Biocompatible Materials/chemistry , Mechanical Phenomena , Polyesters/chemistry , Biocompatible Materials/metabolism , Hydrolysis , Permeability , Polyesters/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...