Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 225: 113275, 2023 May.
Article in English | MEDLINE | ID: mdl-36965333

ABSTRACT

In this research, Cu2ZnSnS4 (CZTS) particles were successfully fabricated via the molten salt approach from the copper, zinc and tin sulphides as raw precursors. SEM analysis revealed that CZTS particles are tetragonal-shaped with sharp edges, smooth flat plane morphology, and crystal size varying from 10.8 to 28.7 µm. The phase and crystalline structure of synthesized powders were investigated using XRD analysis, which confirms the presence of a tetragonal crystal structure kesterite phase. The chemical composition of CZTS particles was evaluated by EDX spectroscopy, which identified the nearly stoichiometric composition with an averaged formula of Cu1.88Zn1.04SnS3.97. The TG/DTA-MS and ICP-OES analysis showed the possible decomposition pathways and predicted their degradation rate in aqueous solutions. The CZTS particles possessed highly effective concentration and time-dependent antimicrobial properties against medically relevant bacteria and yeast strains. The CZTS particles (1 g L-1) exhibited over 95.7 ± 1.9% killing efficiency towards M. luteus. In contrast, higher dosages (3.5 and 5 g L-1) led to its complete inactivation and reduced the P. aeruginosa cell viability to 43.2 ± 3.2% and 4.1 ± 1.1%, respectively. Moreover, the CZTS particles (0.5 g L-1) are responsible for causing 54.8 ± 1.8% of C. krusei and 89.7 ± 2.1% of C. parapsilosis yeasts death within the 24 h of exposure, which expanded to almost 100% when yeasts were treated with two times higher CZTS concentration (1.0 g L-1). The mechanism of action has been proposed and evidenced by monitoring the 2',7'-dichlorofluorescein (DCF) fluorescence, which revealed that the overproduction of reactive oxygen species (ROS) is responsible for microorganism death.


Subject(s)
Anti-Infective Agents , Anti-Infective Agents/pharmacology , Candida parapsilosis , Cell Survival , Copper/pharmacology , Pseudomonas aeruginosa , Saccharomyces cerevisiae
2.
Materials (Basel) ; 15(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35408032

ABSTRACT

Aluminum anodization in an aqueous solution of formic acid and sodium vanadate leads to the formation of alumina/carbon composite films. This process was optimized by varying the concentrations of formic acid and sodium vanadate, the pH, and the processing time in constant-voltage (60-100 V) or constant-current mode. As estimated, in this electrolyte, the anodizing conditions played a critical role in forming thick, nanoporous anodic films with surprisingly high carbon content up to 17 at.%. The morphology and composition of these films were examined by scanning electron microscopy, ellipsometry, EDS mapping, and thermogravimetry coupled with mass spectrometry. For the analysis of incorporated carbon species, X-ray photoelectron and Auger spectroscopies were applied, indicating the presence of carbon in both the sp2 and the sp3 states. For these films, the Tauc plots derived from the experimental diffuse reflectance spectra revealed an unprecedentedly low bandgap (Eg) of 1.78 eV compared with the characteristic Eg values of alumina films formed in solutions of other carboxylic acids under conventional anodization conditions and visible-light absorption.

3.
Materials (Basel) ; 14(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801322

ABSTRACT

The noble, metal-free materials capable of efficiently catalyzing water splitting reactions currently hold a great deal of promise. In this study, we reported the structure and electrochemical performance of new MoS2-based material synthesized with L-cysteine. For this, a facile one-pot hydrothermal process was developed and an array of densely packed nanoplatelet-shaped hybrid species directly on a conductive substrate were obtained. The crucial role of L-cysteine was determined by numerous methods on the structure and composition of the synthesized material and its activity and stability for hydrogen evolution reaction (HER) from the acidic water. A low Tafel slope of 32.6 mV dec-1, close to a Pt cathode, was registered for the first time. The unique HER performance at the surface of this hybrid material in comparison with recently reported MoS2-based electrocatalysts was attributed to the formation of more defective 1T, 2H-MoS2/MoOx, C nanostructures with the dominant 1T-MoS2 phase and thermally degraded cysteine residues entrapped. Numerous stacks of metallic (1T-MoS2 and MoO2) and semiconducting (2H-MoS2 and MoO3) fragments relayed the formation of highly active layered nanosheets possessing a low hydrogen adsorption free energy and much greater durability, whereas intercalated cysteine fragments had a low Tafel slope of the HER reaction. X-ray photoelectron spectroscopy, scanning electron microscopy, thermography with mass spectrometry, high-resolution transmission electron microscopy, Raman spectroscopy techniques, and linear sweep voltammetry were applied to verify our findings.

4.
J Colloid Interface Sci ; 591: 115-128, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33596501

ABSTRACT

In this research the molybdenum disulfide (MoS2)-based nano/microparticles and coatings were synthesized through a simple, one-step hydrothermal approach without any other additives. Composition, structure, and morphology of the synthesized MoS2-based materials were investigated using ultraviolet-visible spectroscopy (UV-Vis), inductively coupled plasma optical emission spectrometry (ICP-OES), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) techniques. The fabricated materials exhibited relatively small (Δθ = 18.7 ± 2.5°) contact angle and prominent hydrophilic properties, which are attributable to sulfur-enriched MoS2 composite as evidenced by simultaneous thermal analysis (STA) coupled with mass spectrometric (MS) analysis of evolving gaseous species (TG/DTA-MS) analysis. Such nanostructures exhibit a better adhesion of biomolecules, thus facilitating the interaction between them, as confirmed by highly effective antimicrobial action. The present study examines antimicrobial properties of hydrophilic, sulfur-enriched MoS2 nano/microparticles as well as MoS2-based coatings against various humans' pathogenic bacteria such as Salmonella enterica, Pseudomonas aeruginosa, Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), Micrococcus luteus, and two Candida yeast strains (C. parapsilosis, C. krusei). The MoS2-ns (40 µg mL-1) showed over 90% killing efficiency against S. aureus MRSA bacteria and both Candida yeast when exposed for 24 h. Petal-like MoS2 microstructures and heterostructured MoS2/Ti and Pd/MoS2/Ti coatings also possessed high antimicrobial potential and are considered as a promising antimicrobial agent. The MoS2-induced production of intracellular reactive oxygen species (ROS) was evidenced by measuring the standard DCF dye fluorescence.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Anti-Infective Agents/pharmacology , Disulfides , Humans , Molybdenum , Palladium , Staphylococcus aureus , Sulfur
SELECTION OF CITATIONS
SEARCH DETAIL