Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 7572, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33828109

ABSTRACT

The development of appropriate materials for fusion reactors that can sustain high neutron fluence at elevated temperatures remains a great challenge. Tungsten is one of the promising candidate materials for plasma-facing components of future fusion reactors, due to several favorable properties as for example a high melting point, a high sputtering resistivity, and a low coefficient of thermal expansion. The microstructural details of a tungsten sample with a 1.25 dpa (displacements per atom) damage dose after neutron irradiation at 800 °C were examined by transmission electron microscopy. Three types of radiation-induced defects were observed, analyzed and characterized: (1) voids with sizes ranging from 10 to 65 nm, (2) dislocation loops with a size of up to 10 nm and (3) W-Re-Os containing σ- and χ-type precipitates. The distribution of voids as well as the nature of the occurring dislocation loops were studied in detail. In addition, nano-chemical analyses revealed that the σ- and χ-type precipitates, which are sometimes attached to voids, are surrounded by a solid solution cloud enriched with Re. For the first time the crystallographic orientation relationship of the σ- and χ-phases to the W-matrix was specified. Furthermore, electron energy-loss spectroscopy could not unambiguously verify the presence of He within individual voids.

2.
Sci Rep ; 10(1): 19966, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33177679

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 10(1): 8042, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32415139

ABSTRACT

The microstructural response of beryllium after neutron irradiation at various temperatures (643-923 K) was systematically studied using analytical transmission electron microscope that together with outcomes from advanced atomistic modelling provides new insights in the mechanisms of microstructural changes in this material. The most prominent feature of microstructural modification is the formation of gas bubbles, which is revealed at all studied irradiation temperatures. Except for the lowest irradiation temperature, gas bubbles have the shape of thin hexagonal prisms with average height and diameter increasing with temperature. A high number density of small bubbles is observed within grains, while significantly larger bubbles are formed along high-angle grain boundaries (GB). Denuded zones (DZ) nearly free from bubbles are found along both high- and low-angle grain boundaries. Precipitations of secondary phases (mainly intermetallic Al-Fe-Be) were observed inside grains, along dislocation lines and at GBs. EDX analysis has revealed homogeneous segregation of chromium and iron along GBs. The observed features are discussed with respect to the available atomistic modelling results. In particular, we present a plausible reasoning for the abundant formation of gas bubbles on intermetallic precipitates, observation of various thickness of zones denuded in gas bubbles and precipitates, and their relation to the atomic scale diffusion mechanisms of solute-vacancy clusters.

4.
Micron ; 127: 102754, 2019 12.
Article in English | MEDLINE | ID: mdl-31593896

ABSTRACT

Electron energy loss spectroscopy (EELS) was applied to detect and analyze quantitatively helium (He) and tritium (3H) enclosed inside bubbles in irradiated beryllium. Both gases were formed in beryllium under neutron irradiation as a consequence of neutron-induced transmutation reactions. They were detected for the first time as pronounced peaks at 13.0 eV for 3H and 22.4 eV for He in EELS spectra collected from flat hexagonal bubbles. An adhesion of 3H or formation of thin beryllium hydride layers on the internal basal surfaces was observed. The number densities of both gases were estimated using electron scattering cross-section and intensities obtained from EELS spectra. The number density values estimated for various bubbles fluctuate from 4 to 15 at/nm3 for He and from 4 to 10 molecules/nm3 for 3H2. Lower gas number density was measured inside large bubbles. The observed higher density of tritium at inner walls of bubbles seems to confirm very recent ab initio calculations of the interaction of hydrogen isotopes with beryllium surfaces.

5.
Micron ; 46: 51-6, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23332433

ABSTRACT

Electron energy loss spectroscopy (EELS) was used to detect and study the spatial distribution on the nanoscale of He and Li in boron-alloyed steel after neutron irradiation. Li and He are the products of the (10)B(n, α)(7)Li nuclear transmutation reaction and knowledge of their distribution is important to understand their influence on mechanical properties. Here, a new method is presented for the direct detection of Li in Fe, which is based on the analysis of the plasmon structure in EELS spectra. Li drops or particles in He bubbles show pronounced Li plasmon line at 10eV which can be extracted from the Fe/Cr plasmon. The Gaussian or linear interpolation of the Fe/Cr plasmon and its subtraction allows for the calculation of Li and He two-dimensional maps and the study their spatial distribution. The analysis of Li plasmon fine structure allows imaging surface effects in the Li drops.

6.
J Microsc ; 237(3): 497-500, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20500424

ABSTRACT

Ar-filled bubbles in an oxide-dispersion-strengthened (ODS) alloy were characterized by analytical transmission electron microscopy. Energy dispersive X-ray analysis combined with nanoscale imaging was employed for quantitative analysis of Ar gas locked in a bubble 6 nm in size. As the Ar bubbles are formed at the ODS particles - matrix interface, the known Ti(2)Y(2)O(7) composition and size of ODS particles served as a reference in quantification of the Ar signal and for the calculation of the bubble size and the Ar density inside. The Ar pressure was also calculated by modified Van der Waals equation.

SELECTION OF CITATIONS
SEARCH DETAIL
...