Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Oecologia ; 204(4): 959-973, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38635052

ABSTRACT

How the resource use by consumers vary in different environments and time scales is one of the fundamental ecological questions. Replicated field studies are rare, however; so the extent to which nutrient use varies and why is uncertain. We studied an endangered tyrphobiotic species, the black bog ant (Formica picea), and its feeding preferences in temperate peatlands. We conducted a baiting experiment at three different sites with high nest densities, repeated over three years and three periods of growing season. Preferences for three main macronutrients (carbohydrates, proteins and lipids) were assessed. We hypothesised that if nutrient limitation plays a role, ants will have an increased need for proteins and lipids in early seasons when brood is raised, while carbohydrates use will increase in late seasons. We also expected that site identity would influence nutrient preferences, but not year. Our results supported the nutrient limitation hypothesis for proteins that were consumed more in the early season. In contrast, preference for carbohydrates was rather high and did not increase consistently through season. Although the occupancy of lipid baits was low overall, it increased at colder temperatures, in contrast to carbohydrate and protein baits. Nutrient preferences varied more among sites than years, with the lowest nutrient use observed in a diverse fen-meadow, consistent with the nutrient limitation hypothesis. Year affected ant abundance, but not bait occupancy. Our results suggest that black bog ants flexibly adapt their diet to environmental conditions and that an interplay between nutrient limitation and climate determines their feeding behaviour.


Subject(s)
Ants , Nutrients , Seasons , Animals , Ants/physiology , Feeding Behavior , Wetlands , Food Preferences
2.
Netw Neurosci ; 8(1): 293-318, 2024.
Article in English | MEDLINE | ID: mdl-38562290

ABSTRACT

Recently, in the past decade, high-frequency oscillations (HFOs), very high-frequency oscillations (VHFOs), and ultra-fast oscillations (UFOs) were reported in epileptic patients with drug-resistant epilepsy. However, to this day, the physiological origin of these events has yet to be understood. Our study establishes a mathematical framework based on bifurcation theory for investigating the occurrence of VHFOs and UFOs in depth EEG signals of patients with focal epilepsy, focusing on the potential role of reduced connection strength between neurons in an epileptic focus. We demonstrate that synchronization of a weakly coupled network can generate very and ultra high-frequency signals detectable by nearby microelectrodes. In particular, we show that a bistability region enables the persistence of phase-shift synchronized clusters of neurons. This phenomenon is observed for different hippocampal neuron models, including Morris-Lecar, Destexhe-Paré, and an interneuron model. The mechanism seems to be robust for small coupling, and it also persists with random noise affecting the external current. Our findings suggest that weakened neuronal connections could contribute to the production of oscillations with frequencies above 1000 Hz, which could advance our understanding of epilepsy pathology and potentially improve treatment strategies. However, further exploration of various coupling types and complex network models is needed.


We have built a mathematical framework to examine how a reduced neuronal coupling within an epileptic focus could lead to very high-frequency (VHFOs) and ultra-fast oscillations (UFOs) in depth EEG signals. By analyzing weakly coupled neurons, we found a bistability synchronization region where in-phase and anti-phase synchrony persist. These dynamics can be detected as very high-frequency EEG signals. The principle of weak coupling aligns with the disturbances in neuronal connections often observed in epilepsy; moreover, VHFOs are important markers of epileptogenicity. Our findings point to the potential significance of weakened neuronal connections in producing VHFOs and UFOs related to focal epilepsy. This could enhance our understanding of brain disorders. We emphasize the need for further investigations of weakly coupled neurons.

3.
Front Neurol ; 15: 1371055, 2024.
Article in English | MEDLINE | ID: mdl-38595852

ABSTRACT

Insulinomas are rare gastrointestinal tumors with an incidence of 1-3 per million inhabitants annually. These tumors result in excessive insulin production, culminating in hypoglycemia. Such hypoglycemia triggers various central nervous system (CNS) manifestations, including headache, confusion, abnormal behavior, and epileptic seizures, which can lead to misdiagnosis as epilepsy. This case report documents a 46-year-old male who presented seizure-like episodes. Episodes occurred mainly during the night, lasting several minutes to hours. Initial seizures were characterized by bizarre behavior and altered responsiveness. Over time, seizure frequency, complexity, and severity escalated. We managed to record two episodes during long-term EEG and report, as the first ones, the detailed quantitative EEG analysis of these hypoglycemia-related events. EEG changes preceded the development of clear-cut pathological motor activity in tens of minutes and were present in all investigated frequency bands. The development of profound motor activity was associated with other increases in EEG power spectra in all frequencies except for delta. The most pronounced changes were found over the left temporal region, which can be the most susceptible to hypoglycemia. In our patient, the seizure-like episodes completely disappeared after the insulinoma removal, which demonstrates their relationship to hypoglycemia.

4.
Clin Neurophysiol ; 161: 1-9, 2024 May.
Article in English | MEDLINE | ID: mdl-38430856

ABSTRACT

OBJECTIVE: Interictal biomarkers of the epileptogenic zone (EZ) and their use in machine learning models open promising avenues for improvement of epilepsy surgery evaluation. Currently, most studies restrict their analysis to short segments of intracranial EEG (iEEG). METHODS: We used 2381 hours of iEEG data from 25 patients to systematically select 5-minute segments across various interictal conditions. Then, we tested machine learning models for EZ localization using iEEG features calculated within these individual segments or across them and evaluated the performance by the area under the precision-recall curve (PRAUC). RESULTS: On average, models achieved a score of 0.421 (the result of the chance classifier was 0.062). However, the PRAUC varied significantly across the segments (0.323-0.493). Overall, NREM sleep achieved the highest scores, with the best results of 0.493 in N2. When using data from all segments, the model performed significantly better than single segments, except NREM sleep segments. CONCLUSIONS: The model based on a short segment of iEEG recording can achieve similar results as a model based on prolonged recordings. The analyzed segment should, however, be carefully and systematically selected, preferably from NREM sleep. SIGNIFICANCE: Random selection of short iEEG segments may give rise to inaccurate localization of the EZ.


Subject(s)
Electroencephalography , Epilepsy , Machine Learning , Humans , Female , Male , Adult , Epilepsy/physiopathology , Epilepsy/diagnosis , Electroencephalography/methods , Middle Aged , Time Factors , Young Adult , Electrocorticography/methods , Electrocorticography/standards , Adolescent , Brain/physiopathology , Sleep Stages/physiology
5.
J Anim Ecol ; 93(4): 501-516, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38409804

ABSTRACT

Tropical rainforest trees host a diverse arthropod fauna that can be characterised by their functional diversity (FD) and phylogenetic diversity (PD). Human disturbance degrades tropical forests, often coinciding with species invasion and altered assembly that leads to a decrease in FD and PD. Tree canopies are thought to be particularly vulnerable, but rarely investigated. Here, we studied the effects of forest disturbance on an ecologically important invertebrate group, the ants, in a lowland rainforest in New Guinea. We compared an early successional disturbed plot (secondary forest) to an old-growth plot (primary forest) by exhaustively sampling their ant communities in a total of 852 trees. We expected that for each tree community (1) disturbance would decrease FD and PD in tree-dwelling ants, mediated through species invasion. (2) Disturbance would decrease ant trait variation due to a more homogeneous environment. (3) The main drivers behind these changes would be different contributions of true tree-nesting species and visiting species. We calculated FD and PD based on a species-level phylogeny and 10 ecomorphological traits. Furthermore, we assessed by data exclusion the influence of species, which were not nesting in individual trees (visitors) or only nesting species (nesters), and of non-native species on FD and PD. Primary forests had higher ant species richness and PD than secondary forest. However, we consistently found increased FD in secondary forest. This pattern was robust even if we decoupled functional and phylogenetic signals, or if non-native ant species were excluded from the data. Visitors did not contribute strongly to FD, but they increased PD and their community weighted trait means often varied from nesters. Moreover, all community-weighted trait means changed after forest disturbance. Our finding of contradictory FD and PD patterns highlights the importance of integrative measures of diversity. Our results indicate that the tree community trait diversity is not negatively affected, but possibly even enhanced by disturbance. Therefore, the functional diversity of arboreal ants is relatively robust when compared between old-growth and young trees. However, further study with higher plot-replication is necessary to solidify and generalise our findings.


Subject(s)
Ants , Biodiversity , Humans , Animals , Phylogeny , Forests , Rainforest , Ecosystem
6.
Sci Rep ; 13(1): 19225, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932365

ABSTRACT

Interictal very high-frequency oscillations (VHFOs, 500-2000 Hz) in a resting awake state seem to be, according to a precedent study of our team, a more specific predictor of a good outcome of the epilepsy surgery compared to traditional interictal high-frequency oscillations (HFOs, 80-500 Hz). In this study, we retested this hypothesis on a larger cohort of patients. In addition, we also collected patients' sleep data and hypothesized that the occurrence of VHFOs in sleep will be greater than in resting state. We recorded interictal invasive electroencephalographic (iEEG) oscillations in 104 patients with drug-resistant epilepsy in a resting state and in 35 patients during sleep. 21 patients in the rest study and 11 patients in the sleep study met the inclusion criteria (interictal HFOs and VHFOs present in iEEG recordings, a surgical intervention and a postoperative follow-up of at least 1 year) for further evaluation of iEEG data. In the rest study, patients with good postoperative outcomes had significantly higher ratio of resected contacts with VHFOs compared to HFOs. In sleep, VHFOs were more abundant than in rest and the percentage of resected contacts in patients with good and poor outcomes did not considerably differ in any type of oscillations. In conclusion, (1) our results confirm, in a larger patient cohort, our previous work about VHFOs being a specific predictor of the area which needs to be resected; and (2) that more frequent sleep VHFOs do not further improve the results.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Humans , Wakefulness , Electroencephalography/methods , Drug Resistant Epilepsy/surgery , Sleep
7.
Epilepsia ; 64(11): 3049-3060, 2023 11.
Article in English | MEDLINE | ID: mdl-37592755

ABSTRACT

OBJECTIVE: Focal cortical dysplasia (FCD), hippocampal sclerosis (HS), nonspecific gliosis (NG), and normal tissue (NT) comprise the majority of histopathological results of surgically treated drug-resistant epilepsy patients. Epileptic spikes, high-frequency oscillations (HFOs), and connectivity measures are valuable biomarkers of epileptogenicity. The question remains whether they could also be utilized for preresective differentiation of the underlying brain pathology. This study explored spikes and HFOs together with functional connectivity in various epileptogenic pathologies. METHODS: Interictal awake stereoelectroencephalographic recordings of 33 patients with focal drug-resistant epilepsy with seizure-free postoperative outcomes were analyzed (15 FCD, 8 HS, 6 NT, and 4 NG). Interictal spikes and HFOs were automatically identified in the channels contained in the overlap of seizure onset zone and resected tissue. Functional connectivity measures (relative entropy, linear correlation, cross-correlation, and phase consistency) were computed for neighboring electrode pairs. RESULTS: Statistically significant differences were found between the individual pathologies in HFO rates, spikes, and their characteristics, together with functional connectivity measures, with the highest values in the case of HS and NG/NT. A model to predict brain pathology based on all interictal measures achieved up to 84.0% prediction accuracy. SIGNIFICANCE: The electrophysiological profile of the various epileptogenic lesions in epilepsy surgery patients was analyzed. Based on this profile, a predictive model was developed. This model offers excellent potential to identify the nature of the underlying lesion prior to resection. If validated, this model may be particularly valuable for counseling patients, as depending on the lesion type, different outcomes are achieved after epilepsy surgery.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Humans , Electroencephalography/methods , Epilepsy/diagnosis , Epilepsy/surgery , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Stereotaxic Techniques , Brain/diagnostic imaging , Brain/surgery
8.
J Neural Eng ; 20(3)2023 06 16.
Article in English | MEDLINE | ID: mdl-37285840

ABSTRACT

Objective.The current practices of designing neural networks rely heavily on subjective judgment and heuristic steps, often dictated by the level of expertise possessed by architecture designers. To alleviate these challenges and streamline the design process, we propose an automatic method, a novel approach to enhance the optimization of neural network architectures for processing intracranial electroencephalogram (iEEG) data.Approach.We present a genetic algorithm, which optimizes neural network architecture and signal pre-processing parameters for iEEG classification.Main results.Our method improved the macroF1 score of the state-of-the-art model in two independent datasets, from St. Anne's University Hospital (Brno, Czech Republic) and Mayo Clinic (Rochester, MN, USA), from 0.9076 to 0.9673 and from 0.9222 to 0.9400 respectively.Significance.By incorporating principles of evolutionary optimization, our approach reduces the reliance on human intuition and empirical guesswork in architecture design, thus promoting more efficient and effective neural network models. The proposed method achieved significantly improved results when compared to the state-of-the-art benchmark model (McNemar's test,p≪ 0.01). The results indicate that neural network architectures designed through machine-based optimization outperform those crafted using the subjective heuristic approach of a human expert. Furthermore, we show that well-designed data preprocessing significantly affects the models' performance.


Subject(s)
Electrocorticography , Neural Networks, Computer , Humans , Electroencephalography/methods , Signal Processing, Computer-Assisted
10.
Epilepsia ; 64(4): 962-972, 2023 04.
Article in English | MEDLINE | ID: mdl-36764672

ABSTRACT

OBJECTIVE: High-frequency oscillations are considered among the most promising interictal biomarkers of the epileptogenic zone in patients suffering from pharmacoresistant focal epilepsy. However, there is no clear definition of pathological high-frequency oscillations, and the existing detectors vary in methodology, performance, and computational costs. This study proposes relative entropy as an easy-to-use novel interictal biomarker of the epileptic tissue. METHODS: We evaluated relative entropy and high-frequency oscillation biomarkers on intracranial electroencephalographic data from 39 patients with seizure-free postoperative outcome (Engel Ia) from three institutions. We tested their capability to localize the epileptogenic zone, defined as resected contacts located in the seizure onset zone. The performance was compared using areas under the receiver operating curves (AUROCs) and precision-recall curves. Then we tested whether a universal threshold can be used to delineate the epileptogenic zone across patients from different institutions. RESULTS: Relative entropy in the ripple band (80-250 Hz) achieved an average AUROC of .85. The normalized high-frequency oscillation rate in the ripple band showed an identical AUROC of .85. In contrast to high-frequency oscillations, relative entropy did not require any patient-level normalization and was easy and fast to calculate due to its clear and straightforward definition. One threshold could be set across different patients and institutions, because relative entropy is independent of signal amplitude and sampling frequency. SIGNIFICANCE: Although both relative entropy and high-frequency oscillations have a similar performance, relative entropy has significant advantages such as straightforward definition, computational speed, and universal interpatient threshold, making it an easy-to-use promising biomarker of the epileptogenic zone.


Subject(s)
Electroencephalography , Epilepsy , Humans , Entropy , Electroencephalography/methods , Epilepsy/diagnosis , Epilepsy/surgery , Electrocorticography/methods , Biomarkers
11.
Sci Rep ; 13(1): 1065, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36658267

ABSTRACT

Very high-frequency oscillations (VHFOs, > 500 Hz) are more specific in localizing the epileptogenic zone (EZ) than high-frequency oscillations (HFOs, < 500 Hz). Unfortunately, VHFOs are not visible in standard clinical stereo-EEG (SEEG) recordings with sampling rates of 1 kHz or lower. Here we show that "shadows" of VHFOs can be found in frequencies below 500 Hz and can help us to identify SEEG channels with a higher probability of increased VHFO rates. Subsequent analysis of Logistic regression models on 141 SEEG channels from thirteen patients shows that VHFO "shadows" provide additional information to gold standard HFO analysis and can potentially help in precise EZ delineation in standard clinical recordings.


Subject(s)
Electroencephalography , High-Frequency Ventilation , Humans , Stereotaxic Techniques , Blood Coagulation Tests
12.
Sci Rep ; 13(1): 744, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639549

ABSTRACT

Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154.


Subject(s)
Electrocorticography , Electroencephalography , Humans , Prospective Studies , Electroencephalography/methods , Brain/physiology , ROC Curve
13.
Proc Natl Acad Sci U S A ; 119(42): e2214825119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36197959

Subject(s)
Ants , Animals , Biomass , Ecosystem
14.
Clin Neurophysiol ; 134: 88-99, 2022 02.
Article in English | MEDLINE | ID: mdl-34991017

ABSTRACT

OBJECTIVE: We hypothesized that spatio-temporal dynamics of interictal spikes reflect the extent and stability of epileptic sources and determine surgical outcome. METHODS: We studied 30 consecutive patients (14 good outcome). Spikes were detected in prolonged stereo-electroencephalography recordings. We quantified the spatio-temporal dynamics of spikes using the variance of the spike rate, line length and skewness of the spike distribution, and related these features to outcome. We built a logistic regression model, and compared its performance to traditional markers. RESULTS: Good outcome patients had more dominant and stable sources than poor outcome patients as expressed by a higher variance of spike rates, a lower variance of line length, and a lower variance of positive skewness (ps < 0.05). The outcome was correctly predicted in 80% of patients. This was better or non-inferior to predictions based on a focal lesion (p = 0.016), focal seizure-onset zone, or complete resection (ps > 0.05). In the five patients where traditional markers failed, spike distribution predicted the outcome correctly. The best results were achieved by 18-h periods or longer. CONCLUSIONS: Analysis of spike dynamics shows that surgery outcome depends on strong, single and stable sources. SIGNIFICANCE: Our quantitative method has the potential to be a reliable predictor of surgical outcome.


Subject(s)
Brain Waves/physiology , Brain/physiopathology , Drug Resistant Epilepsy/physiopathology , Epilepsies, Partial/physiopathology , Adult , Brain/surgery , Brain Mapping , Drug Resistant Epilepsy/surgery , Electroencephalography , Epilepsies, Partial/surgery , Female , Humans , Male , Middle Aged , Models, Neurological , Neurosurgical Procedures , Prognosis , Treatment Outcome , Young Adult
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 265-268, 2021 11.
Article in English | MEDLINE | ID: mdl-34891287

ABSTRACT

For the last decades, ripples 80-200Hz (R)and fast ripples 200-500Hz (FR) were intensively studied as biomarkers of the epileptogenic zone (EZ). Recently, Very fast ripples 500-1000Hz (VFR) and ultra-fast ripples 1000-2000Hz (UFR) recorded using standard clinical macro electrodes have been shown to be more specific for EZ. High-sampled microelectrode recordings can bring new insights into this phenomenon of high frequency, multiunit activity. Unfortunately, visual detection of such events is extremely time consuming and unreliable. Here we present a detector of ultra-fast oscillations (UFO, >1kHz). In an example of two patients, we detected 951 UFOs which were more frequent in epileptic (8.6/min) vs. non-epileptic hippocampus (1.3/min). Our detection method can serve as a tool for exploring extremely high frequency events from microelectrode recordings.


Subject(s)
Brain Waves , Epilepsy , Brain , Electroencephalography , Epilepsy/diagnosis , Humans , Microelectrodes
16.
Hum Brain Mapp ; 42(17): 5626-5635, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34448523

ABSTRACT

The degree of response to subthalamic nucleus deep brain stimulation (STN-DBS) is individual and hardly predictable. We hypothesized that DBS-related changes in cortical network organization are related to the clinical effect. Network analysis based on graph theory was used to evaluate the high-density electroencephalography (HDEEG) recorded during a visual three-stimuli paradigm in 32 Parkinson's disease (PD) patients treated by STN-DBS in stimulation "off" and "on" states. Preprocessed scalp data were reconstructed into the source space and correlated to the behavioral parameters. In the majority of patients (n = 26), STN-DBS did not lead to changes in global network organization in large-scale brain networks. In a subgroup of suboptimal responders (n = 6), identified according to reaction times (RT) and clinical parameters (lower Unified Parkinson's Disease Rating Scale [UPDRS] score improvement after DBS and worse performance in memory tests), decreased global connectivity in the 1-8 Hz frequency range and regional node strength in frontal areas were detected. The important role of the supplementary motor area for the optimal DBS response was demonstrated by the increased node strength and eigenvector centrality in good responders. This response was missing in the suboptimal responders. Cortical topologic architecture is modified by the response to STN-DBS leading to a dysfunction of the large-scale networks in suboptimal responders.


Subject(s)
Cerebral Cortex/physiopathology , Deep Brain Stimulation , Nerve Net/physiopathology , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Psychomotor Performance/physiology , Subthalamic Nucleus/physiopathology , Aged , Electroencephalography , Female , Humans , Male , Middle Aged , Outcome Assessment, Health Care
17.
Epilepsia ; 62(5): e70-e75, 2021 05.
Article in English | MEDLINE | ID: mdl-33755992

ABSTRACT

We hypothesized that local/regional properties of stimulated structure/circuitry contribute to the effect of deep brain stimulation (DBS). We analyzed intracerebral electroencephalographic (EEG) recordings from externalized DBS electrodes targeted bilaterally in the anterior nuclei of the thalamus (ANT) in 12 patients (six responders, six nonresponders) with more than 1 year of follow-up care. In the bipolar local field potentials of the EEG, spectral power (PW) and power spectral entropy (PSE) were calculated in the passbands 1-4, 4-8, 8-12, 12-20, 20-45, 65-80, 80-200 and 200-500 Hz. The most significant differences between responders and nonresponders were observed in the BRIDGE area (bipolar recordings with one contact within the ANT and the second contact in adjacent tissue). In responders, PW was significantly decreased in the frequency bands of 65-80, 80-200, and 200-500 Hz (p < .05); PSE was significantly increased in all frequency bands (p < .05) except for 200-500 Hz (p = .06). The local EEG characteristics of ANT recorded after implantation may play a significant role in DBS response prediction.


Subject(s)
Anterior Thalamic Nuclei/physiopathology , Anterior Thalamic Nuclei/surgery , Deep Brain Stimulation/methods , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/surgery , Electroencephalography/methods , Humans
18.
Front Neurol ; 11: 578571, 2020.
Article in English | MEDLINE | ID: mdl-33193030

ABSTRACT

The electrophysiological EEG features such as high frequency oscillations, spikes and functional connectivity are often used for delineation of epileptogenic tissue and study of the normal function of the brain. The epileptogenic activity is also known to be suppressed by cognitive processing. However, differences between epileptic and healthy brain behavior during rest and task were not studied in detail. In this study we investigate the impact of cognitive processing on epileptogenic and non-epileptogenic hippocampus and the intracranial EEG features representing the underlying electrophysiological processes. We investigated intracranial EEG in 24 epileptic and 24 non-epileptic hippocampi in patients with intractable focal epilepsy during a resting state period and during performance of various cognitive tasks. We evaluated the behavior of features derived from high frequency oscillations, interictal epileptiform discharges and functional connectivity and their changes in relation to cognitive processing. Subsequently, we performed an analysis whether cognitive processing can contribute to classification of epileptic and non-epileptic hippocampus using a machine learning approach. The results show that cognitive processing suppresses epileptogenic activity in epileptic hippocampus while it causes a shift toward higher frequencies in non-epileptic hippocampus. Statistical analysis reveals significantly different electrophysiological reactions of epileptic and non-epileptic hippocampus during cognitive processing, which can be measured by high frequency oscillations, interictal epileptiform discharges and functional connectivity. The calculated features showed high classification potential for epileptic hippocampus (AUC = 0.93). In conclusion, the differences between epileptic and non-epileptic hippocampus during cognitive processing bring new insight in delineation between pathological and physiological processes. Analysis of computed iEEG features in rest and task condition can improve the functional mapping during pre-surgical evaluation and provide additional guidance for distinguishing between epileptic and non-epileptic structure which is absolutely crucial for achieving the best possible outcome with as little side effects as possible.

19.
PLoS Biol ; 18(11): e3000979, 2020 11.
Article in English | MEDLINE | ID: mdl-33253185

ABSTRACT

The vast net of fibres within and underneath the cortex is optimised to support the convergence of different levels of brain organisation. Here, we propose a novel coordinate system of the human cortex based on an advanced model of its connectivity. Our approach is inspired by seminal, but so far largely neglected models of cortico-cortical wiring established by postmortem anatomical studies and capitalises on cutting-edge in vivo neuroimaging and machine learning. The new model expands the currently prevailing diffusion magnetic resonance imaging (MRI) tractography approach by incorporation of additional features of cortical microstructure and cortico-cortical proximity. Studying several datasets and different parcellation schemes, we could show that our coordinate system robustly recapitulates established sensory-limbic and anterior-posterior dimensions of brain organisation. A series of validation experiments showed that the new wiring space reflects cortical microcircuit features (including pyramidal neuron depth and glial expression) and allowed for competitive simulations of functional connectivity and dynamics based on resting-state functional magnetic resonance imaging (rs-fMRI) and human intracranial electroencephalography (EEG) coherence. Our results advance our understanding of how cell-specific neurobiological gradients produce a hierarchical cortical wiring scheme that is concordant with increasing functional sophistication of human brain organisation. Our evaluations demonstrate the cortical wiring space bridges across scales of neural organisation and can be easily translated to single individuals.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Connectome/methods , Adult , Brain/diagnostic imaging , Cerebral Cortex/anatomy & histology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Diffusion Magnetic Resonance Imaging , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/pathology , Drug Resistant Epilepsy/physiopathology , Electrocorticography , Epilepsies, Partial/diagnostic imaging , Epilepsies, Partial/pathology , Epilepsies, Partial/physiopathology , Female , Functional Neuroimaging , Humans , Machine Learning , Male , Models, Anatomic , Models, Neurological , Nerve Net/anatomy & histology , Nerve Net/diagnostic imaging , Nerve Net/physiology , Young Adult
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 204-207, 2020 07.
Article in English | MEDLINE | ID: mdl-33017965

ABSTRACT

For a correct assessment of stereo-electroencephalographic (SEEG) recordings, a proper signal electrical reference is necessary. Such a reference might be physical or virtual. Physical reference can be noisy and a proper virtual reference calculation is often time-consuming. This paper uses the variance of the SEEG signals to calculate the reference from relatively low noise signals to reduce the contamination by distant sources, while maintaining negligible computing time.Ten patients with SEEG recordings were used in this study. 20-second long recordings from each patient, sampled at 5000 Hz, were used to calculate variances of SEEG signals and a low-variance (LV) subset of signals was selected for each patient. Consequently, 4 different reference signals were calculated using: 1) an average signal from WM contacts only (AVG_WM); 2) an average signal from LV contacts only (AVG_LV); 3) independent component analysis (ICA) method from WM contacts only (ICA_WM); and 4) ICA method from LV signals only (ICA_LV). Also, the original testing reference, an average signal from all SEEG contacts (AVG) was utilized. Finally, bipolar signals and average signals from anatomical structures were calculated and used to evaluate reference signals.91.7% of the WM SEEG contacts were found below the average variance. ICA_LV showed the best and AVG_WM the worst overall results. AVG_LV had the most positive impact on minimizing the mutual correlations between separate brain structures and correcting the outliers. The average processing time for ICA methods was 66.72 seconds and 0.7870 seconds for AVG methods (100 000 samples, 125.7±20.4 SEEG signals).Utilizing the LV data subset improves the reference signal. WM references are difficult to obtain and seem to be more susceptible to errors caused by low number of WM contacts in the dataset. ICA_LV can be considered as one of the best reference estimations, however the calculation is very demanding and time consuming. AVG_LV shows good and stable results, while it is based on a straightforward methodology and outstandingly fast calculation.


Subject(s)
Brain , Electroencephalography , Algorithms , Brain Mapping , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...