Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 24(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36359669

ABSTRACT

We derive the explicit differential form for the action of the generators of the SU(1,1) group on the corresponding s-parametrized symbols. This allows us to obtain evolution equations for the phase-space functions on the upper sheet of the two-sheet hyperboloid and analyze their semiclassical limits. Dynamics of quantum systems with SU(1,1) symmetry governed by compact and non-compact Hamiltonians are discussed in both quantum and semiclassical regimes.

2.
Opt Lett ; 47(3): 477-480, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35103655

ABSTRACT

We demonstrate that the multipoles associated with the density matrix are truly observable quantities that can be unambiguously determined from intensity moments. Given their correct transformation properties, these multipoles are the natural variables to deal with a number of problems in the quantum domain. In the case of polarization, the moments are measured after the light has passed through two quarter-wave plates, one half-wave plate, and a polarizing beam splitter for specific values of the angles of the wave plates. For more general two-mode problems, equivalent measurements can be performed.

3.
Entropy (Basel) ; 23(6)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071644

ABSTRACT

We apply the semi-classical limit of the generalized SO(3) map for representation of variable-spin systems in a four-dimensional symplectic manifold and approximate their evolution terms of effective classical dynamics on T*S2. Using the asymptotic form of the star-product, we manage to "quantize" one of the classical dynamic variables and introduce a discretized version of the Truncated Wigner Approximation (TWA). Two emblematic examples of quantum dynamics (rotor in an external field and two coupled spins) are analyzed, and the results of exact, continuous, and discretized versions of TWA are compared.

4.
Opt Lett ; 35(12): 2064-6, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20548387

ABSTRACT

We propose a reconstruction of vortex beams based on implementation of quadratic transformations in the orbital angular momentum. The information is encoded in a superposition of Bessel-like nondiffracting beams. The measurement of the angular probability distribution at different positions allows for the reconstruction of the Wigner function.

SELECTION OF CITATIONS
SEARCH DETAIL
...