Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
IUCrdata ; 9(Pt 3): x240234, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38586524

ABSTRACT

The mol-ecular structure of 2-ferrocenyl-2-[(2-ferrocenylethen-yl)(morpholin-4-yl)meth-yl]-1,3-di-thiol-ane, [Fe2(C5H5)2(C19H21NOS2)] or C29H31Fe2NOS2, has the ferrocenyl fragments in a trans disposition with respect to the vinyl group. One of the methyl-ene groups is disordered over two sites with occupancies of 0.782 (13):0.218 (13). In the crystal, cyclo-penta-dienyl-C-H⋯O(morpholin-yl) inter-actions feature within helical chains parallel to the c-axis direction. The chains are connected by methyl-ene- and cyclo-penta-dienyl-C-H⋯O(cyclo-penta-dien-yl) inter-actions.

2.
Life (Basel) ; 13(11)2023 Nov 05.
Article in English | MEDLINE | ID: mdl-38004307

ABSTRACT

Listerias of the phylogenetic lineage II (PLII) are common in the European environment and are hypovirulent. Despite this, they caused more than a third of the sporadic cases of listeriosis and multi-country foodborne outbreaks. L. monocytogenes ST37 is one of them. During the COVID-19 pandemic, ST37 appeared in clinical cases and ranked second in occurrence among food isolates in the Moscow region. The aim of this study was to describe the genomic features of ST37 isolates from different sources. All clinical cases of ST37 were in the cohort of male patients (age, 48-81 years) with meningitis-septicemia manifestation and COVID-19 or Influenza in the anamnesis. The core genomes of the fish isolates were closely related. The clinical and meat isolates revealed a large diversity. Prophages (2-4/genome) were the source of the unique genes. Two clinical isolates displayed pseudolysogeny, and excided prophages were A006-like. In the absence of plasmids, the assortment of virulence factors and resistance determinants in the chromosome corresponded to the hypovirulent characteristics. However, all clinical isolates caused severe disease, with deaths in four cases. Thus, these studies allow us to speculate that a previous viral infection increases human susceptibility to listeriosis.

3.
IUCrdata ; 8(Pt 8): x230616, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37693788

ABSTRACT

The structure of the title Fe complex, [Fe(C5H5)2(C17H16N4O)], was determined at 130 K, and has ortho-rhom-bic (Pna21) symmetry. It is of inter-est with respect to the class of triazine heterocyclic compounds: the triazine ring is substituted by two ferrocenyl and one morpholine groups. The crystal structure features C-H⋯O and C-H⋯N non-classical hydrogen bonds.

4.
Molecules ; 28(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37630260

ABSTRACT

Amoebiasis is the second leading cause of death worldwide associated with parasitic disease and is becoming a critical health problem in low-income countries, urging new treatment alternatives. One of the most promising strategies is enhancing the redox imbalance within these susceptible parasites related to their limited antioxidant defense system. Metal-based drugs represent a perfect option due to their extraordinary capacity to stabilize different oxidation states and adopt diverse geometries, allowing their interaction with several molecular targets. This work describes the amoebicidal activity of five 2-(Z-2,3-diferrocenylvinyl)-4X-4,5-dihydrooxazole derivatives (X = H (3a), Me (3b), iPr (3c), Ph (3d), and benzyl (3e)) on Entamoeba histolytica trophozoites and the physicochemical, experimental, and theoretical properties that can be used to describe the antiproliferative activity. The growth inhibition capacity of these organometallic compounds is strongly related to a fine balance between the compounds' redox potential and hydrophilic character. The antiproliferative activity of diferrocenyl derivatives studied herein could be described either with the redox potential, the energy of electronic transitions, logP, or the calculated HOMO-LUMO values. Compound 3d presents the highest antiproliferative activity of the series with an IC50 of 23 µM. However, the results of this work provide a pipeline to improve the amoebicidal activity of these compounds through the directed modification of their electronic environment.


Subject(s)
Amebicides , Entamoeba histolytica , Amebicides/pharmacology , Antioxidants , Electronics
5.
Pharm Nanotechnol ; 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37592778

ABSTRACT

BACKGROUND: Janus Dendrimer represents a novel class of synthetic nanocarriers. Since it is possible to introduce multiple drugs and target moieties, this helps the designing of new biocompatible forms with pharmacological activities comprised of different drugs with tailor-made functionalities, such as anticancer and nonsteroidal anti-inflammatory, which could improve the anticancer activity with less toxicity. AIMS: This study aimed to determine the anticancer activity of the Janus dendrimers formed by two dendrons. One dendron conjugates with chlorambucil, and the other dendron conjugates with Ibuprofen. METHODS: The cytotoxicity of the drug carriers was determined by the sulforhodamine B (SRB) assay for three cell lines. PC-3 (human prostatic adenocarcinoma), HCT-15 (human colorectal adenocarcinoma), MFC-7 (human breast cancer) and the COS-7 African green monkey kidney (used as a control) cell lines were seeded into 96-well plates at a density of 5x103 cells/well and cultured for 24 h before use. All the obtained compounds were characterized by 1H and 13C NMR one and two dimensions, UV-vis, FTIR, MALDI-TOF, Electrospray mass, and FAB+. Microscopic images were taken in an Inverted microscope Nikon, Diaphot 300, 10x4 in culture medium. RESULTS: Janus dendrimers (G1 and G2) were synthesized via an azide-alkyne click-chemistry reaction attaching on one face dendrons with ibuprofen molecules and, on the other face, attached a chlorambucil-derivative. The IC50 behavior of the conjugates of the first and second generations showed anticancer activity against PC-3, HCT-15, and MFC-7 cell lines. The second generation was more active against PC-3, HCT-15 and MFC-7 with IC50 of 3.8±0.5, 3.0±0.2 and 3.7±1.1 M, respectively Conclusion: The new Janus dendrimers with anticancer chlorambucil and nonsteroidal anti-inflammatory Ibuprofen can improve the anticancer activity of chlorambucil with less toxicity.

6.
J Clin Exp Hepatol ; 13(1): 48-63, 2023.
Article in English | MEDLINE | ID: mdl-36647402

ABSTRACT

Background: Liver diseases remain the most important medical and biological problem. Works devoted to the study of the vitamin A role have shown conflicting results of its effect on the fibrosis development. We tested the hypothesis that an increase of the copper content in the liver, an example of which is Wilson's disease, shifts the balance in the redox system towards pro-oxidants, which leads to the antioxidant systems inhibition, including a decrease in the vitamin A content; this affects the levels of liver function regulation and the development of fibrosis. Methods: In animals with Cu-induced liver fibrosis, neutrophil activity, the immunocompetent cells content, the activity of alanine aminotransferase and γ-glutamylaminotransferase, the content of urea and creatinine in blood serum, as well as the vitamin A content in the liver, copper ions and its regenerative potential were determined. Results: It was found that three consecutive injections of copper sulfate to animals with an interval of 48 h between injections led to the death of 40% of the animals, and 60% showed resistance. The content of vitamin A in "resistant" animals at the beginning of the development of the fibrosis was reduced by 4 times compared to the control, the functional activity of the liver was somewhat reduced, and a connective tissue capsule was formed around the liver lobes in 75% of the animals. If animals with the initial stage of liver fibrosis received daily vitamin A at a dose of 300 IU/100 g of body weight, which was accompanied by its multiple increase in the liver (15 times on day 14), the mortality of animals decreased by almost 7 times, the functional activity of the liver did not differ from control. In the blood of these animals, the number of leukocytes, granulocytes, and monocytes was increased and phagocytic activity was increased. At the same time, the connective tissue capsule was developed more intensively than in animals receiving only copper sulfate, and was detected in 91% of the animals. Fragments of the liver, even more than in the case of fibrosis, lost the ability to regenerate in culture. Conclusion: We came to the conclusion that vitamin A leads to the connective tissue "specialization" formation of the liver and triggers vicious circles of metabolism and includes several levels of regulation systems. Further studies of the vitamin A effect mechanisms on the liver with fibrosis will allow the use of this antioxidant in the treatment.

7.
Immunobiology ; 228(1): 152316, 2023 01.
Article in English | MEDLINE | ID: mdl-36565610

ABSTRACT

We studied the role of cytotoxic components (DAMPs) formed in the body of patients with COVID-19 in ensuring the long-term preservation of post-COVID-19 manifestations and the possibility of creating an experimental model by transferring DAMPs to rats. In patients with post-COVID-19 syndrome (PCS) 2 months after SARS-CoV-2 infection we determined the presence of cytotoxic components in the blood serum (Terasaki test, Dunaliella viridis test and content of DAMPs). In post-COVID-19 syndrome patients with a high content of serum cytotoxic oligopeptide fraction (selective group, n = 16) we determined the number of leukocytes, lymphocytes, neutrophil granulocytes and monocytes in the blood, the content of C-reactive protein (CRP), the concentration of C3 and C4 complement components and circulating immune complexes, the serum content of IL-6, IL -10, IL-18, TNF-α, phagocytic activity of neutrophils, presence of neutrophil traps and autoantibodies ANA. It has been shown that in patients with PCS, there are components with cytotoxicity in the blood serum, form specific immunopathological patterns, which are characterized by: an increased content of CRP, complement system components C3 and C4 and cytokines (TNF-α, IL-6, IL-10, IL-18) activation, the formation of a wide range of autoantibodies ANA, the low efficiency of endocytosis in oxygen-independent phagocytosis; their phagocytic activity reaches its functional limit, and against this background, activation of neutrophil traps occurs, which can contribute to further induction of DAMPs. This self-sustaining cell-killing activation provided long-term preservation of PCS symptoms. The transfer of blood serum components from selective group patients with PCS to rats was accompanied by the appearance of cytotoxic components in them which induced sensitization and immunopathological reactions. Preventive administration of a biologically active substance with polyfunctional properties MF to experimental animals "corrected" the initial functional state of the body's immune-metabolic system and eliminated or facilitated immuno-inflammatory reactions.


Subject(s)
COVID-19 , Humans , Rats , Animals , Interleukin-18 , Post-Acute COVID-19 Syndrome , Interleukin-6 , Tumor Necrosis Factor-alpha , Molecular Weight , SARS-CoV-2 , C-Reactive Protein/metabolism , Complement C3 , Autoantibodies
8.
IUCrdata ; 7(Pt 10): x221011, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36405852

ABSTRACT

The structure of 4,5-diferrocenyl-1,2-di-thiole-3-thione, [Fe2(C5H5)2(C13H8S3)] or C23H18Fe2S3, at 130 K has monoclinic (P21/c) symmetry. The molecule has two ferrocenyl units attached to a 1,2-di-thiole-3-thione moiety. It is of inter-est with respect to the question if the introduction of ferrocenyl substituents into biologically active mol-ecules offers the potential to obtain more efficacious therapeutic drugs. The crystal structure displays inter-molecular contacts of the C-H⋯S and S-π(C-C) types.

9.
Antioxidants (Basel) ; 11(2)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35204238

ABSTRACT

Chronic kidney disease (CKD) is a world health problem increasing dramatically. The onset of CKD is driven by several mechanisms; among them, metabolic reprogramming and changes in redox signaling play critical roles in the advancement of inflammation and the subsequent fibrosis, common pathologies observed in all forms of CKD. Extracellular vesicles (EVs) are cell-derived membrane packages strongly associated with cell-cell communication since they transfer several biomolecules that serve as mediators in redox signaling and metabolic reprogramming in the recipient cells. Recent studies suggest that EVs, especially exosomes, the smallest subtype of EVs, play a fundamental role in spreading renal injury in CKD. Therefore, this review summarizes the current information about EVs and their cargos' participation in metabolic reprogramming and mitochondrial impairment in CKD and their role in redox signaling changes. Finally, we analyze the effects of these EV-induced changes in the amplification of inflammatory and fibrotic processes in the progression of CKD. Furthermore, the data suggest that the identification of the signaling pathways involved in the release of EVs and their cargo under pathological renal conditions can allow the identification of new possible targets of injury spread, with the goal of preventing CKD progression.

10.
Wiad Lek ; 74(3 cz 1): 475-480, 2021.
Article in English | MEDLINE | ID: mdl-33813453

ABSTRACT

OBJECTIVE: The aim: To evaluate the relationship of certain alleles of HLA class II leukocyte antigens and the profile of antibodies to various subunits of nicotinic acetylcholine receptors (nAChR), the level of Treg lymphocytes and the serum concentration of anti-inflammatory IL-10 for various clinical myasthenia gravis phenotypes. PATIENTS AND METHODS: Materials and methods: We examined 217 patients with thymus-independent myasthenia (n = 42) and thymus-dependent myasthenia, among them patients with thymus hyperplasia (n = 108) and thymoma (n = 67). We used the following methods: ELISA, flow cytometry, light and fluorescence microscopy. RESULTS: Results: Certain genomic (polymorphism of leukocyte HLA-DR antigens) and epigenomic (antibodies to α1 and α7 nAChR subunits, expression of Treg lymphocytes and concentration of cytokines) predictors were identified for various myasthenia phenotypes. The presence of HLA haplotypes DR2 and DR7 in some young patients with M with disease progression led to the development of myasthenia gravis with thymoma (MT) at an older age. The presence of α7 nAChR subunit on thymocyte mitochondria was revealed, which is an additional autoimmune target for autoantibodies in patients with myasthenia gravis. An increase in the concentration of cytokines (IL-4, IL-8, IFN-γ) in all patients with myasthenia gravis was revealed. CONCLUSION: Conclusions: Estimate the features of the formation of various variants of the immune response in thymus-independent and thymus-dependent myasthenia gravis is a necessary condition for targeted immunocorrection or surgery.


Subject(s)
Myasthenia Gravis , Thymus Neoplasms , Aged , Autoantibodies , Epigenomics , Genomics , Humans , Myasthenia Gravis/genetics , Phenotype
11.
Bioorg Med Chem Lett ; 30(21): 127507, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32866675

ABSTRACT

In this paper, we designed and extended modification basing on the flutamide structure. A series of flutamide-conjugates were obtained with methyl bromoacetate and ethylenediamine. Through the synthesis of two conjugates with 3,5-bis(dodecyloxy)benzoate derivatives, these flutamide conjugates were tested for anticancer activity. Among the compounds tested, the flutamide-conjugates showed good inhibition activity against cancer cell lines U-251, PC-3 and K-562. The conjugates showed a better inhibitory effect than free flutamide and did not show activity against normal COS-7 monkey kidney fibroblast cells. It was also observed that the flutamide conjugates had an inhibitory effect against human colorectal adenocarcinoma HCT-15.


Subject(s)
Antineoplastic Agents/pharmacology , Flutamide/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Flutamide/chemical synthesis , Flutamide/chemistry , Humans , Molecular Structure , Structure-Activity Relationship
12.
Food Chem Toxicol ; 145: 111774, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32980475

ABSTRACT

Curcumin has protective effects in several acute kidney injury models, including that induced by potassium dichromate (K2Cr2O7). The protective effect of curcumin in this experimental model has been associated to the preservation of mitochondrial bioenergetics. This study is aimed at evaluating whether or not curcumin's protective effect in mitochondrial bioenergetics is related to the modulation of mitochondrial dynamics and biogenesis. Wistar rats were treated with a single subcutaneous dose of K2Cr2O7 (12.5 mg/kg) or received curcumin (400 mg/kg/day) by oral gavage 10 days before and one day after the K2Cr2O7 injection. K2Cr2O7 induced kidney dysfunction and increased mitochondrial hydrogen peroxide production, while decreasing the respiration directly attributable to oxidative phosphorylation and mitochondrial membrane potential. In mitochondria, K2Cr2O7 increased fission and reduced fusion. Structural analysis of mitochondria in the proximal tubular cells corroborated their fragmentation and loss of crests' integrity. Regarding mitochondrial biogenesis, K2Cr2O7 decreased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) levels. Conversely, curcumin treatment mitigated the aforementioned alterations and increased the expression of the mitochondrial transcription factor A (TFAM). Taken together, our results suggest that curcumin can protect against renal injury by modulating mitochondrial homeostasis, mitigating alterations in bioenergetics and dynamics, possibly by stimulating mitochondrial biogenesis.


Subject(s)
Acute Kidney Injury/drug therapy , Curcumin/administration & dosage , Mitochondria/drug effects , Potassium Dichromate/adverse effects , Acute Kidney Injury/etiology , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Animals , Homeostasis/drug effects , Humans , Kidney/drug effects , Kidney/metabolism , Male , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rats , Rats, Wistar , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Biofactors ; 46(5): 716-733, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32905648

ABSTRACT

Obstructive nephropathy favors the progression to chronic kidney disease (CKD), a severe health problem worldwide. The unilateral ureteral obstruction (UUO) model is used to study the development of fibrosis. Impairment of renal mitochondria plays a crucial role in several types of CKD and has been strongly related to fibrosis onset. Nevertheless, in the UUO model, the impairment of mitochondria, their relationship with endoplasmic reticulum (ER) stress induction and the participation of both to induce the fibrotic process remain unclear. In this review, we summarize the current information about mitochondrial bioenergetics, redox dynamics, mitochondrial mass, and biogenesis alterations, as well as the relationship of these mitochondrial alterations with ER stress and their participation in fibrotic processes in UUO models. Early after obstruction, there is metabolic reprogramming related to mitochondrial fatty acid ß-oxidation impairment, triggering lipid deposition, oxidative stress, (calcium) Ca2+ dysregulation, and a reduction in mitochondrial mass and biogenesis. Mitochondria and the ER establish a pathological feedback loop that promotes the impairment of both organelles by ER stress pathways and Ca2+ levels dysregulation. Preserving mitochondrial and ER function can prevent or at least delay the fibrotic process and loss of renal function. However, deeper understanding is still necessary for future clinically-useful therapies.


Subject(s)
Fibrosis/genetics , Mitochondria/genetics , Renal Insufficiency, Chronic/genetics , Ureteral Obstruction/genetics , Calcium Signaling/genetics , Cellular Reprogramming/genetics , Endoplasmic Reticulum Stress/genetics , Fibrosis/metabolism , Fibrosis/pathology , Humans , Mitochondria/pathology , Organelle Biogenesis , Oxidation-Reduction , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology
14.
Bioorg Med Chem Lett ; 30(14): 127275, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32527536

ABSTRACT

The first example of conjugation of open-resorcinarenes with chlorambucil, ibuprofen, naproxen and indomethacin are presented. The cytotoxic properties of the obtained conjugates were tested against the cancer cell lines U-251, PC-3, K-562, HCT-15, MCF-7 and SKLU-1. It was found that the conjugate with chlorambucil, naproxen or indomethacin (having 8 moieties) was toxic towards cancer cell lines U-251 and K-562, with no activity against non-cancerous COS-7 cells. The conjugates with naproxen and indomethacin showed high selectivity towards U-251 tumor cells.


Subject(s)
Antineoplastic Agents/pharmacology , Calixarenes/pharmacology , Phenylalanine/analogs & derivatives , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , COS Cells , Calixarenes/chemical synthesis , Calixarenes/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Phenylalanine/chemical synthesis , Phenylalanine/chemistry , Phenylalanine/pharmacology , Structure-Activity Relationship
15.
Free Radic Biol Med ; 154: 18-32, 2020 07.
Article in English | MEDLINE | ID: mdl-32360615

ABSTRACT

Recent studies suggest that mitochondrial bioenergetics and oxidative stress alterations may be common mechanisms involved in the progression of renal damage. However, the evolution of the mitochondrial alterations over time and the possible effects that their prevention could have in the progression of renal damage are not clear. Folic acid (FA)-induced kidney damage is a widely used experimental model to induce acute kidney injury (AKI), which can evolve to chronic kidney disease (CKD). Therefore, it has been extensively applied to study the mechanisms involved in AKI-to-CKD transition. We previously demonstrated that one day after FA administration, N-acetyl-cysteine (NAC) pre-administration prevented the development of AKI induced by FA. Such therapeutic effect was related to mitochondrial preservation. In the present study, we characterized the temporal course of mitochondrial bioenergetics and redox state alterations along the progression of renal damage induced by FA. Mitochondrial function was studied at different time points and showed a sustained impairment in oxidative phosphorylation capacity and a decrease in ß-oxidation, decoupling, mitochondrial membrane potential depolarization and a pro-oxidative state, attributed to the reduction in activity of complexes I and III and mitochondrial cristae effacement, thus favoring the transition from AKI to CKD. Furthermore, the mitochondrial protection by NAC administration before AKI prevented not only the long-term deterioration of mitochondrial function at the chronic stage, but also CKD development. Taken together, our results support the idea that the prevention of mitochondrial dysfunction during an AKI event can be a useful strategy to prevent the transition to CKD.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Disease Progression , Energy Metabolism , Folic Acid , Humans , Mitochondria/metabolism , Oxidation-Reduction , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism
16.
Front Pharmacol ; 11: 151, 2020.
Article in English | MEDLINE | ID: mdl-32184727

ABSTRACT

Nordihydroguaiaretic acid (NDGA) is a phenolic lignan obtained from Larrea tridentata, the creosote bush found in Mexico and USA deserts, that has been used in traditional medicine for the treatment of numerous diseases such as cancer, renal, cardiovascular, immunological, and neurological disorders, and even aging. NDGA presents two catechol rings that confer a very potent antioxidant activity by scavenging oxygen free radicals and this may explain part of its therapeutic action. Additional effects include inhibition of lipoxygenases (LOXs) and activation of signaling pathways that impinge on the transcription factor Nuclear Factor Erythroid 2-related Factor (NRF2). On the other hand, the oxidation of the catechols to the corresponding quinones my elicit alterations in proteins and DNA that raise safety concerns. This review describes the current knowledge on NDGA, its targets and side effects, and its synthetic analogs as promising therapeutic agents, highlighting their mechanism of action and clinical projection towards therapy of neurodegenerative, liver, and kidney disease, as well as cancer.

17.
Food Chem Toxicol ; 138: 111229, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32105807

ABSTRACT

Endoplasmic reticulum (ER) stress is a normal molecular process induced by the over-accumulation of misfolded or unfolded proteins. ER stress induces the unfolded protein response (UPR), which reduces global protein synthesis, increases ER capacity and protein degradation, to restart ER homeostasis, allowing cell survival. However, the over-induction of UPR can also trigger inflammatory processes, tissue damage and cell death. ER stress is involved in several pathologies, like endothelial dysfunction, diabetes and heart, liver, kidney or neurological diseases. Although the progression of these diseases is the result of several pathological mechanisms, oxidative stress has been widely related to these pathologies. Moreover, ER stress can establish a progressive pathological cycle with oxidative stress. Therefore, the use of natural antioxidants, able to modulate both oxidative and ER stress, can be a new strategy to mitigate these diseases. This review is focused on the effects of natural antioxidant compounds on ER stress in endothelial dysfunction, diabetes and heart, liver, kidney or neurological diseases.


Subject(s)
Antioxidants/pharmacology , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum/drug effects , Unfolded Protein Response/drug effects , Animals , Apoptosis/drug effects , Homeostasis , Humans , Signal Transduction/drug effects
18.
Med Chem ; 16(7): 984-990, 2020.
Article in English | MEDLINE | ID: mdl-31448714

ABSTRACT

BACKGROUND: One of the possible ways of improving the activity and selectivity profile of anticancer agents is to design drug carrier systems employing nanomolecules. Calix[4]arene derivatives and chlorambucil and ibuprofen are important compounds that exhibit interesting anticancer properties. OBJECTIVE: The objective of this article is the synthesis of new calix[4]arene-derivative conjugates of chlorambucil or ibuprofen with potential anticancer activity. METHODS: Cytotoxicity assays were determined using the protein-binding dye sulforhodamine B (SRB) in microculture to measure cell growth as described [19, 20]. Conjugates of chlorambucil and resorcinarene-dendrimers were prepared in 2% DMSO and added into the culture medium immediately before use. Control cells were treated with 2% DMSO. RESULTS: Thus, calix[4]arene-derivative conjugates of chlorambucil or ibuprofen showed good stability of the chemical link between drug and spacer. Evaluation of the cytotoxicity of the calix[4]arene chlorambucil or ibuprofen conjugates employing a sulforhodamine B (SRB) assay in K-562 (human chronic myelogenous leukemia cells) and U-251 (human glioblastoma cells) demonstrated that the conjugate was more potent as an antiproliferative agent than free chlorambucil and ibuprofen. The conjugates did not show any activity against the COS-7 African green monkey kidney fibroblast cell line. CONCLUSION: In the paper, we report the synthesis and spectroscopic analyses of new calix[4]arene derivative conjugates of chlorambucil or ibuprofen. Cytotoxicity assays revealed that at 10 µM, the conjugates were very active against K-562 (human chronic myelogenous leukemia cells) and U- 251 (human glioblastoma cells) cancer cells' proliferation. In order to explain the molecular mechanisms involved in the anticancer activity of calix[4]arene chlorambucil or ibuprofen conjugates, our research will be continued.


Subject(s)
Antineoplastic Agents/pharmacology , Calixarenes/pharmacology , Chlorambucil/pharmacology , Ibuprofen/pharmacology , Phenols/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Calixarenes/chemistry , Cell Proliferation/drug effects , Chlorambucil/chemical synthesis , Chlorambucil/chemistry , Drug Screening Assays, Antitumor , Humans , Ibuprofen/chemical synthesis , Ibuprofen/chemistry , Molecular Structure , Phenols/chemistry , Tumor Cells, Cultured
19.
Yale J Biol Med ; 92(3): 423-433, 2019 09.
Article in English | MEDLINE | ID: mdl-31543706

ABSTRACT

Mitochondria are pivotal organelles involved in vital cellular functions, including energy generation, reactive oxygen species and calcium signaling, as well as intermediate biosynthesis. They are dynamic organelles that adapt their shape, size, and distribution to changes in intracellular conditions, being able to divide, fuse, or move along the cell, processes known as mitochondrial dynamics. Mitochondrial dynamics are involved in cell division and migration, as well as maintenance of pluripotency in stem (non-differentiated) cells. Thus, its central role in carcinogenesis is not surprising. Particularly, mitochondrial dynamics have been found to be pivotal to the development of gliomas, a lethal group of tumors developed from glial cells, which are nervous system cells that provide support to neurons. Unfortunately, prognosis of glioma patients is poor, most of them do not survive more than five years after diagnosis. In this context, it is fundamental to understand the cellular mechanisms involved in this pathology, in order to develop an appropriate clinical approach. As previously mentioned, mitochondrial dynamics is central to glioma development, particularly, mitochondrial division (fission) and one of its central effectors, dynamin-related protein 1 (Drp1), have been observed to be enhanced in gliomas and involved in the maintenance of stem cells (which initiate and maintain the tumor), as well as in migration and invasiveness, being central to gliomagenesis. In this review, we discuss the findings on mitochondrial fission role in these processes, further, we analyze the potential use of Drp1 as a novel prognostic biomarker in glioma patients.


Subject(s)
Dynamins/metabolism , Glioma/metabolism , Mitochondrial Dynamics , Animals , Biomarkers, Tumor/metabolism , Carcinogenesis/metabolism , Carcinogenesis/pathology , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
20.
Biomolecules ; 9(8)2019 08 13.
Article in English | MEDLINE | ID: mdl-31412571

ABSTRACT

Improving the activity and selectivity profile of anticancer agents will require designing drug carrier systems that employ soluble macromolecules. Olsalazine-PAMAM-dendrimer-salicylic acid-conjugates with dendritic arms of different lengths have shown good stability regarding the chemical link between drug and spacer. In this study, the drug release was followed in vitro by ultraviolet (UV) studies. Evaluation of the cytotoxicity of the olsalazine-PAMAM-dendrimer-salicylic acid-conjugates employing a sulforhodamine B (SRB) assay in PC-3 (human prostatic adenocarcinoma) and MCF-7 (human mammary adenocarcinoma) cell lines demonstrated that conjugate 9 was more active as an antiproliferative agent than cisplatin, and no cytotoxicity towards the African green monkey kidney fibroblast (COS-7) cell line was observed in any of the conjugates synthesized in the present work.


Subject(s)
Aminosalicylic Acids/pharmacology , Antineoplastic Agents/pharmacology , Dendrimers/pharmacology , Salicylic Acid/pharmacology , Aminosalicylic Acids/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , COS Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , Dendrimers/chemistry , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Salicylic Acid/chemistry , Solubility , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...