Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3372, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643198

ABSTRACT

Optical interference filters (OIFs) are vital components for a wide range of optical and photonic systems. They are pivotal in controlling spectral transmission and reflection upon demand. OIFs rely on optical interference of the incident wave at multilayers, which are fabricated with nanometer precision. Here, we demonstrate that these requirements can be fulfilled by inkjet printing. This versatile technology offers a high degree of freedom in manufacturing, as well as cost-affordable and rapid-prototyping features from the micron to the meter scale. In this work, via rational ink design and formulation, OIFs were fully inkjet printed in ambient conditions. Longpass, shortpass, bandpass, and dichroic OIFs were fabricated, and precise control of the spectral response in OIFs was realized. Subsequently, customized lateral patterning of OIFs by inkjet printing was achieved. Furthermore, upscaling of the printed OIFs to A4 size (29.7 × 21.0 cm²) was demonstrated.

2.
Bioengineering (Basel) ; 10(2)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36829649

ABSTRACT

The laser patterning of implant materials for bone tissue engineering purposes has proven to be a promising technique for controlling cell properties such as adhesion or differentiation, resulting in enhanced osteointegration. However, the possibility of patterning the bone tissue side interface to generate microstructure effects has never been investigated. In the present study, three different laser-generated patterns were machined on the bone surface with the aim of identifying the best surface morphology compatible with osteogenic-related cell recolonization. The laser-patterned bone tissue was characterized by scanning electron microscopy and confocal microscopy in order to obtain a comprehensive picture of the bone surface morphology. The cortical bone patterning impact on cell compatibility and cytoskeleton rearrangement on the patterned surfaces was assessed using Stromal Cells from the Apical Papilla (SCAPs). The results indicated that laser machining had no detrimental effect on consecutively seeded cell metabolism. Orientation assays revealed that patterns with larger hatch distances were correlated with higher cell cytoskeletal conformation to the laser-machined patterns. To the best of our knowledge, this study is the first to consider and evaluate bone as a biological interface that can be engineered for improvement. Further investigations should focus on the in vivo implications of this direct patterning.

3.
Int J Mol Sci ; 23(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35743076

ABSTRACT

To face the increasing demand for organ transplantation, currently the development of tissue engineering appears as the best opportunity to effectively regenerate functional tissues and organs. However, these approaches still face the lack of an efficient method to produce an efficient vascularization system. To answer these issues, the formation of an intra-volume channel within a three-dimensional, scaffold free, mature, and cell-covered collagen microfibre is here investigated through laser-induced cavitation. An intra-volume channel was formed upon irradiation with a near-infrared, femtosecond laser beam, focused with a high numerical aperture lens. The laser beam directly crossed the surface of a dense and living-cell bilayer and was focused behind the bilayer to induce channel formation in the hydrogel core while preserving the cell bilayer. Channel formation was assessed through confocal microscopy. Channel generation inside the hydrogel core was enhanced by the formation of voluminous cavitation bubbles with a lifetime longer than 30 s, which also improved intra-volume channel durability. Twenty-four hours after laser processing, cellular viability dropped due to a lack of sufficient hydration for processing longer than 10 min. However, the processing automation could drastically reduce the cellular mortality, this way enabling the formation of hollowed microfibres with a high density of living-cell outer bilayer.


Subject(s)
Lasers , Tissue Engineering , Collagen , Hydrogels , Microscopy, Confocal/methods , Tissue Engineering/methods
4.
Nanoscale Horiz ; 6(10): 781-790, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34355229

ABSTRACT

A composite material of plasmonic nanoparticles embedded in a scaffold of nano-porous silicon offers unmatched capabilities for use as a SERS substrate. The marriage of these components presents an exclusive combination of tightly focused amplification of Localised Surface Plasmon (LSP) fields inside the material with an extremely high surface-to-volume ratio. This provides favourable conditions for a single molecule or extremely low concentration detection by SERS. In this work the advantage of the composite is demonstrated by SERS detection of Methylene Blue at a concentration as low as a few picomolars. We systematically investigate the plasmonic properties of the material by imaging its morphology, establishing its composition and the effect on the LSP resonance optical spectra.

5.
Materials (Basel) ; 14(9)2021 May 07.
Article in English | MEDLINE | ID: mdl-34067005

ABSTRACT

Femtosecond lasers allow for high-precision, high-quality ablation of biological tissues thanks to their capability of minimizing the thermal loads into the irradiated material. Nevertheless, reported ablation rates remain still too limited to enable their exploitation on a clinical level. This study demonstrates the possibility to upscale the process of fs laser ablation of bone tissue by employing industrially available fs laser sources. A comprehensive parametric study is presented in order to optimize the bone tissue ablation rate while maintaining the tissue health by avoiding excessive thermal loads. Three different absorption regimes are investigated by employing fs laser sources at 1030 nm, 515 nm and 343 nm. The main differences in the three different wavelength regimes are discussed by comparing the evolution of the ablation rate and the calcination degree of the laser ablated tissue. The maximum of the ablation rate is obtained in the visible regime of absorption where a maximum value of 0.66 mm3/s is obtained on a non-calcined tissue for the lowest laser repetition rate and the lowest spatial overlap between successive laser pulses. In this regime, the hemoglobin present in the fresh bone tissue is the main chromophore involved in the absorption process. To the best of our knowledge, this is the highest ablation rate obtained on porcine femur upon fs laser ablation.

6.
Lasers Med Sci ; 36(1): 197-206, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32594349

ABSTRACT

Cell oxygenation and nutrition are crucial for the viability of tissue-engineered constructs, and different alternatives are currently being developed to achieve an adequate vascularisation of the engineered tissue. One of the alternatives is the generation of channel-like patterns in a bioconstruct. Here, the formation of full-formed channels inside hydrogels by laser-induced cavitation was investigated. A near-infrared, femtosecond laser beam focused with a high numerical aperture was employed to obtain intra-volume modifications of a block of gelatine hydrogel. Characterisation of the laser-processed gelatine was carried out by optical microscopy and epifluorescence microscopy right after and 24 h after the laser process. Rheology analyses on the unprocessed gelatine blocks were conducted to better understand the cavitation mechanism taking place during the intense laser interaction. Different cavitation patterns were observed at varying dose values by changing the repetition rate and the overlap between successive pulses while keeping the laser fluence and the number of passes fixed. This way, cavitation bubble features and behaviour can be controlled to optimise the formation of intra-volume channels in the gelatine volume. Results showed that the generation of fully formed channels was linked to the formation of large non-spherical cavitation bubbles during the laser interaction at high dose and low repetition rates. In conclusion, the formation of fully formed channels was made possible with a near-infrared, femtosecond laser beam strongly focused inside gelatine hydrogel blocks through laser-induced cavitation at high dose and low repetition rates.


Subject(s)
Gelatin/chemistry , Hydrogels/chemistry , Lasers , Animals , Dose-Response Relationship, Radiation , Rheology , Swine , Time Factors , Viscosity
7.
Opt Express ; 28(10): 15189-15206, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32403551

ABSTRACT

Glass processing is a subject of high interest for many industrial fields such as optics manufacturing, smart electronics or medical devices. With respect to nanosecond technology, the use of femtosecond lasers allows to achieve high processing quality thanks to nonlinear absorption properties. Nevertheless, the throughput of femtosecond processing is still very low when compared to other laser technologies. Temporal and spatial pulse shaping is a smart and flexible solution to further increase the efficiency of femtosecond laser processing by driving efficiently both electron dynamics and absorption involved during laser irradiation. In the present work, the effect of temporal pulse shaping on fused silica ablation is investigated by single-wavelength (1030nm) double femtosecond pulses pump-pump experiment. Two sub-pulses are focused on the top surface of fused silica with two different polarization configurations: (i) orthogonally-crossed linear polarization or (ii) counter-rotating circular polarization. The investigated parameters are the pulse-to-pulse delay, set with a delay line, the total fluence and the polarization configuration. The results are discussed in term of optical transmission, modification and ablation thresholds, and ablated volume. A numerical model describing the electron dynamics and the absorbed energy density is also presented to support interpretation of experimental results. It is demonstrated that pulse-to-pulse delay has a major influence on ablated volume, modification and ablation threshold. Polarization state has also, to a lesser extent, a significant influence on ablated volume. Their cooperative effect on the ablation efficiency is discussed.

8.
Materials (Basel) ; 12(7)2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30934782

ABSTRACT

Controlling laser induced surface morphology is essential for developing specialized functional surfaces. This work presents novel, multi-scale periodic patterns with two-dimensional symmetry generated on stainless steel, polyimide and sapphire. The microstructures were realized by combining Direct Laser Interference Patterning with the generation of Laser Induced Periodic Surface Structures in a one-step process. An industrial, fiber femtosecond laser source emitting at 1030 nm with a pulse duration of 500 fs was utilized for the experiments. In the case of stainless steel, it was possible to create line-like or pillar-like surface patterns by rotating the polarization orientation with respect to the interference pattern. In the case of polyimide and sapphire, the absorption of the laser radiation was promoted by a multiphoton mechanism. In polyimide, grooves and pillars of several microns in depth were produced over an area much larger than the spot size. Finally, for sapphire, the simultaneous generation of interference-like pattern and laser induced periodic surface structures was realized. The results reported here provide valuable data on the feasibility to combine two state-of-the-art techniques with an industrial apparatus, to control the induced surface morphology.

9.
Materials (Basel) ; 12(8)2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30999570

ABSTRACT

Laser-induced textures have been proven to be excellent solutions for modifying wetting, friction, biocompatibility, and optical properties of solids. The possibility to generate 2D-submicron morphologies by laser processing has been demonstrated recently. Employing double-pulse irradiation, it is possible to control the induced structures and to fabricate novel and more complex 2D-textures. Nevertheless, double-pulse irradiation often implies the use of sophisticated setups for modifying the pulse polarization and temporal profile. Here, we show the generation of homogeneous 2D-LIPSS (laser-induced periodic surface structures) over large areas utilizing a simple array of birefringent crystals. Linearly and circularly polarized pulses were applied, and the optimum process window was defined for both. The results are compared to previous studies, which include a delay line, and the reproducibility between the two techniques is validated. As a result of a systematic study of the process parameters, the obtained morphology was found to depend both on the interplay between fluence and inter-pulse delay, as well as on the number of incident pulses. The obtained structures were characterized via SEM (scanning electron microscopy) and atomic force microscopy. We believe that our results represent a novel approach to surface structuring, primed for introduction in an industrial environment.

10.
Sci Rep ; 8(1): 10112, 2018 07 04.
Article in English | MEDLINE | ID: mdl-29973628

ABSTRACT

Escherichia coli and Staphylococcus aureus bacterial retention on mirror-polished and ultrashort pulse laser-textured surfaces is quantified with a new approach based on ISO standards for measurement of antibacterial performance. It is shown that both wettability and surface morphology influence antibacterial behavior, with neither superhydrophobicity nor low surface roughness alone sufficient for reducing initial retention of either tested cell type. Surface structures comprising spikes, laser-induced periodic surface structures (LIPSS) and nano-pillars are produced with 1030 nm wavelength 350 fs laser pulses of energy 19.1 µJ, 1.01 µJ and 1.46 µJ, respectively. SEM analysis, optical profilometry, shear force microscopy and wettability analysis reveal surface structures with peak separations of 20-40 µm, 0.5-0.9 µm and 0.8-1.3 µm, average areal surface roughness of 8.6 µm, 90 nm and 60 nm and static water contact angles of 160°, 119° and 140°, respectively. E. coli retention is highest for mirror-polished specimens and spikes whose characteristic dimensions are much larger than the cell size. S. aureus retention is instead found to be inhibited under the same conditions due to low surface roughness for mirror-polished samples (Sa: 30 nm) and low wettability for spikes. LIPSS and nano-pillars are found to reduce E. coli retention by 99.8% and 99.2%, respectively, and S. aureus retention by 84.7% and 79.9% in terms of viable colony forming units after two hours of immersion in bacterial broth due to both low wettability and fine surface features that limit the number of available attachment points. The ability to tailor both wettability and surface morphology via ultrashort pulsed laser processing confirms this approach as an important tool for producing the next generation of antibacterial surfaces.


Subject(s)
Asepsis/methods , Bacterial Adhesion , Lasers , Steel/chemistry , Escherichia coli/physiology , Staphylococcus aureus/physiology , Steel/radiation effects , Wettability
11.
RSC Adv ; 8(29): 16082-16087, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-35542234

ABSTRACT

Surface structuring by femtosecond lasers has emerged as an efficient tool to functionalize the surfaces of various solid materials. Laser induced periodic surface structures (LIPSS) can drastically impact the wetting, friction and optical properties of the surface depending on the size, aspect ratio and period of the structures. Morphological characteristics in the nanoscale, such as nano roughness, contributing to a hierarchical surface formation are considered to have a significant impact on those properties. In this study, we demonstrate for the first time to our knowledge the feasibility of inducing ripples and spikes utilizing a 257 nm femtosecond laser. LIPSS with a period smaller than 200 nm were realised. Furthermore, we show the evolution of those structures into conical spikes for this wavelength, and we provide an interpretation on their formation. Finally, we show that sub 200 nm LIPSS can create subwavelength gratings providing non-angular dependent light reflection and non-periodic morphologies showing super hydrophobic behaviour.

12.
Opt Express ; 25(15): 18131-18139, 2017 Jul 24.
Article in English | MEDLINE | ID: mdl-28789302

ABSTRACT

We show, for the first time to our knowledge, the role the heat accumulation plays on the evolution of ultra-short pulse laser-induced surface structures morphology when varying fluence, the number of scans and the repetition rate from 100 kHz up to 2 MHz. We demonstrate how to tailor the size of micro-spikes from nearly ten microns to several tens of microns by a systematic variation of both fluence and overlap. We believe our results will contribute to an in deep understanding of the mechanisms underlying laser surface structuration at high repetition rates.

13.
Chemphyschem ; 18(9): 1210-1216, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28195418

ABSTRACT

The distinctive feature of upconverting compounds to absorb and emit light in the near-infrared region has made upconverting nanoparticles of great interest in various application fields. Nevertheless, these colloids show a highly hydrophobic behavior, and therefore, the use of a proper stabilizing agent is necessary in most cases. Although few chemical techniques for colloid stabilization are available, it is still difficult to achieve a fully reproducible synthesis method for stable upconverting nanoparticle colloids. In this work, upconversion 18 %Yb:1 %Er:NaYF4 nanoparticles were produced by ultrafast pulsed laser ablation in a water and 2-[2-(2-methoxyethoxy)- ethoxy]acetic acid (MEEAA) environment to assess the stabilization effect of the surfactant on the nanoparticle colloid properties. The effects of the laser fluence and MEEAA concentration on the nanoparticles' properties were investigated by TEM, EDS, and emission spectra analyses. The results show that ultrashort pulsed laser ablation in liquid allows generating highly spherical nanoparticles with conserved stoichiometry and optical properties. Moreover, it is possible to obtain colloids with significantly higher stability and preserved optical properties by one-step PLAL processes directly in the MEEAA environment.

14.
Eur J Med Genet ; 48(4): 397-411, 2005.
Article in English | MEDLINE | ID: mdl-16378924

ABSTRACT

Oculo-auriculo-vertebral spectrum (OMIM164210) is a phenotypically and probably also a genetically heterogeneous disorder, characterized by anomalies of the ear (mostly microtia), hemifacial microsomia, and defects of the vertebral column. Associated clinical findings include anomalies of the eye and brain, and developmental delay. We have evaluated the clinical data and photographs of 53 unrelated patients with OAVS, all presenting with either isolated microtia or preauricular tags in association with hemifacial microsomia as minimal diagnostic criteria; five had a positive family history for OAVS. Based on the main clinical findings and unilateral or bilateral involvement, we have developed a new classification system for OAVS, consisting of six subgroups. There is a statistically significant correlation between the subgroup and number of associated clinical findings, and a statistically significant difference regarding prognosis in uni- and bilaterally affected patients, suggesting that this classification is clinically relevant to the categorization of patients with OAVS. The newly developed scoring system (two points for each main clinical finding and one for each associated clinical finding) presented here, also aids prognosis, especially for delay of motor development and brain anomalies, and statistical analysis revealed significant clustering between different clinical findings of OAVS confirming the clinical impression previously published by several authors.


Subject(s)
Abnormalities, Multiple/diagnosis , Goldenhar Syndrome/diagnosis , Abnormalities, Multiple/classification , Abnormalities, Multiple/physiopathology , Adolescent , Adult , Child , Child, Preschool , Diagnosis, Differential , Female , Goldenhar Syndrome/classification , Goldenhar Syndrome/physiopathology , Humans , In Situ Hybridization, Fluorescence , Infant , Male , Middle Aged , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...