Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Hear ; 26: 23312165221104872, 2022.
Article in English | MEDLINE | ID: mdl-35791626

ABSTRACT

During sound lateralization, the information provided by interaural differences in time (ITD) and level (ILD) is weighted, with ITDs and ILDs dominating for low and high frequencies, respectively. For mid frequencies, the weighting between these binaural cues can be changed via training. The present study investigated whether binaural-cue weights change gradually with increasing frequency region, whether they can be changed in various frequency regions, and whether such binaural-cue reweighting generalizes to untrained frequencies. In two experiments, a total of 39 participants lateralized 500-ms, 1/3-octave-wide noise bursts containing various ITD/ILD combinations in a virtual audio-visual environment. Binaural-cue weights were measured before and after a 2-session training in which, depending on the group, either ITDs or ILDs were visually reinforced. In experiment 1, four frequency bands (centered at 1000, 1587, 2520, and 4000 Hz) and a multiband stimulus comprising all four bands were presented during weight measurements. During training, only the 1000-, 2520-, and 4000-Hz bands were presented. In experiment 2, the weight measurements only included the two mid-frequency bands, while the training only included the 1587-Hz band. ILD weights increased gradually from low- to high-frequency bands. When ILDs were reinforced during training, they increased for the 4000- (experiment 1) and 2520-Hz band (experiment 2). When ITDs were reinforced, ITD weights increased only for the 1587-Hz band (at specific azimuths). This suggests that ILD reweighting requires high, and ITD reweighting requires low frequencies without including frequency regions providing fine-structure ITD cues. The changes in binaural-cue weights were independent of the trained bands, suggesting some generalization of binaural-cue reweighting.


Subject(s)
Cues , Sound Localization , Acoustic Stimulation , Humans , Noise , Sound
2.
J Assoc Res Otolaryngol ; 23(1): 119-136, 2022 02.
Article in English | MEDLINE | ID: mdl-34812980

ABSTRACT

Normal-hearing (NH) listeners rely on two binaural cues, the interaural time (ITD) and level difference (ILD), for azimuthal sound localization. Cochlear-implant (CI) listeners, however, rely almost entirely on ILDs. One reason is that present-day clinical CI stimulation strategies do not convey salient ITD cues. But even when presenting ITDs under optimal conditions using a research interface, ITD sensitivity is lower in CI compared to NH listeners. Since it has recently been shown that NH listeners change their ITD/ILD weighting when only one of the cues is consistent with visual information, such reweighting might add to CI listeners' low perceptual contribution of ITDs, given their daily exposure to reliable ILDs but unreliable ITDs. Six bilateral CI listeners completed a multi-day lateralization training visually reinforcing ITDs, flanked by a pre- and post-measurement of ITD/ILD weights without visual reinforcement. Using direct electric stimulation, we presented 100- and 300-pps pulse trains at a single interaurally place-matched electrode pair, conveying ITDs and ILDs in various spatially consistent and inconsistent combinations. The listeners' task was to lateralize the stimuli in a virtual environment. Additionally, ITD and ILD thresholds were measured before and after training. For 100-pps stimuli, the lateralization training increased the contribution of ITDs slightly, but significantly. Thresholds were neither affected by the training nor correlated with weights. For 300-pps stimuli, ITD weights were lower and ITD thresholds larger, but there was no effect of training. On average across test sessions, adding azimuth-dependent ITDs to stimuli containing ILDs increased the extent of lateralization for both 100- and 300-pps stimuli. The results suggest that low-rate ITD cues, robustly encoded with future CI systems, may be better exploitable for sound localization after increasing their perceptual weight via training.


Subject(s)
Cochlear Implantation , Cochlear Implants , Sound Localization , Acoustic Stimulation , Cues , Sound Localization/physiology
3.
J Assoc Res Otolaryngol ; 22(5): 551-566, 2021 10.
Article in English | MEDLINE | ID: mdl-33959826

ABSTRACT

Normal-hearing listeners adapt to alterations in sound localization cues. This adaptation can result from the establishment of a new spatial map of the altered cues or from a stronger relative weighting of unaltered compared to altered cues. Such reweighting has been shown for monaural vs. binaural cues. However, studies attempting to reweight the two binaural cues, interaural differences in time (ITD) and level (ILD), yielded inconclusive results. This study investigated whether binaural-cue reweighting can be induced by lateralization training in a virtual audio-visual environment. Twenty normal-hearing participants, divided into two groups, completed the experiment consisting of 7 days of lateralization training, preceded and followed by a test measuring the binaural-cue weights. Participants' task was to lateralize 500-ms bandpass-filtered (2-4 kHz) noise bursts containing various combinations of spatially consistent and inconsistent binaural cues. During training, additional visual cues reinforced the azimuth corresponding to ITDs in one group and ILDs in the other group and the azimuthal ranges of the binaural cues were manipulated group-specifically. Both groups showed a significant increase of the reinforced-cue weight from pre- to posttest, suggesting that participants reweighted the binaural cues in the expected direction. This reweighting occurred within the first training session. The results are relevant as binaural-cue reweighting likely occurs when normal-hearing listeners adapt to new acoustic environments. Reweighting might also be a factor underlying the low contribution of ITDs to sound localization of cochlear-implant listeners as they typically do not experience reliable ITD cues with clinical devices.


Subject(s)
Acoustics , Cues , Hearing , Sound Localization , Acoustic Stimulation , Cochlear Implantation , Cochlear Implants , Humans , Loudness Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...