Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
Plant Dis ; 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37552164

ABSTRACT

Diplodia corticola is a fungal pathogen contributing to oak (Quercus spp.) decline in the Mediterranean and US (Félix et al., 2017; Ferreira et al., 2021). In 2021, this pathogen was detected in Tennessee (TN) causing branch dieback in Q. alba (Onufrak et al., 2022). In September 2021, a matured pin oak (Q. palustris) with wilted leaves and elongated branch cankers was observed in the State Botanical Garden of Tennessee-Knoxville (TN, US). Small sections of the phloem were sampled from canker margins of a symptomatic branch using a sterile scalpel, surface sterilized, and plated onto potato dextrose agar amended with antibiotics (PDA++) (Gazis et al. 2018). Three days later, a fungal isolate resembling D. corticola was cultured on ½ PDA. Diplodia corticola is characterized on half-strength PDA by fast growth, irregular margins, and dense white mycelium that turns dark, grayish as the mycelium matures (Úrbez-Torres et al., 2010; Alves et al., 2004). Total genomic DNA was extracted from this isolate following Gazis et al. (2018), and the internal transcribed spacer (ITS), large ribosomal subunit (LSU), and transcription elongation factor 1-α (ef1-α) were amplified (Ferreira et al. 2021). Resulting PCR products were sequenced and assembled into consensus sequences using Unipro UGENE v. 44.0 (Okonechnikov et al., 2012). Each consensus sequence identity was determined using BLAST on the NCBI nucleotide database, restricted to type material. The ITS (accession OQ189888), ef-1α (accession OQ201608), and LSU (accession OQ189887) sequences had a 99.6% (accession KF766156.1), 98.6% (accession XM_020275852.1), and 100% (accession KF766323.1) identity match with D. corticola type culture CBS112549, respectively. To complete Koch's postulates and assess potential pathogenicity on economically and ecologically relevant oaks, 10 pin (Q. palustris; caliper 15.6 ± 2.0 mm), 10 overcup (Q. lyrata; caliper 15.1 ± 2.4 mm), and 10 sawtooth (Q. acutissima; 16.1 ± 2.1 mm) oaks were acclimated in the greenhouse for 1 week prior to the experiment. Five trees of each species were then randomly inoculated at 30 cm above the soil line with a 3 mm diameter plug of D. corticola (grown for 10 days on PDA; Sitz et al. 2017). To serve as a control, the remaining 5 trees for each species received a 3 mm diameter PDA plug. Fifteen days post-inoculation, seepage was observed in D. corticola-inoculated pin (5/5 trees), overcup (4/5 trees), and sawtooth (4/5 trees) oaks. No seepage from wound sites was noted in control trees. Cankers were exposed, photographed, and then measured using ImageJ (Rasband, 2012). Using a sterile scalpel, four wood chips were excised from canker margins and plated onto PDA++. We recovered D. corticola from symptomatic inoculated pin (5/5 trees), overcup (4/5 trees), and sawtooth (4/5 trees) oaks and confirmed species identity by extracting DNA and amplifying the ITS, ef-1α, and LSU regions as described above (Gazis et al., 2018; Ferreira et al., 2021). The resulting consensus sequences matched the D. corticola type culture (CBS112549) ITS (99.0%-99.8% identity), ef-1α (91.0%-99.1% identity), and LSU (96.9%-100% identity) barcoding regions. Cankers were significantly larger in D. corticola-inoculated pin (4.7 ± 1.5 cm2; P = 0.003), overcup (6.8 ± 2.9 cm2; P = 0.009), and sawtooth (5.1 ± 1.3 cm2; P = 0.001) oaks in comparison to the control trees from these groups. Based on current reports, this is the first record of D. corticola causing dieback in pin oak (Q. palustris) in TN.

2.
Microbiologyopen ; 11(3): e1286, 2022 06.
Article in English | MEDLINE | ID: mdl-35765178

ABSTRACT

Symbioses between Geosmithia fungi and wood-boring and bark beetles seldom result in disease induction within the plant host. Yet, exceptions exist such as Geosmithia morbida, the causal agent of Thousand Cankers Disease (TCD) of walnuts and wingnuts, and Geosmithia sp. 41, the causal agent of Foamy Bark Canker disease of oaks. Isolates of G. obscura were recovered from black walnut trees in eastern Tennessee and at least one isolate induced cankers following artificial inoculation. Due to the putative pathogenicity and lack of recovery of G. obscura from natural lesions, a molecular diagnostic screening tool was developed using microsatellite markers mined from the G. obscura genome. A total of 3256 candidate microsatellite markers were identified (2236, 789, 137 di-, tri-, and tetranucleotide motifs, respectively), with 2011, 703, 101 di-, tri-, and tetranucleotide motifs, respectively, containing markers with primers. From these, 75 microsatellite markers were randomly selected, screened, and optimized, resulting in 28 polymorphic markers that yielded single, consistently recovered bands, which were used in downstream analyses. Five of these microsatellite markers were found to be specific to G. obscura and did not cross-amplify into other, closely related species. Although the remaining tested markers could be useful, they cross-amplified within different Geosmithia species, making them not reliable for G. obscura detection. Five novel microsatellite markers (GOBS9, GOBS10, GOBS41, GOBS43, and GOBS50) were developed based on the G. obscura genome. These species-specific microsatellite markers are available as a tool for use in molecular diagnostics and can assist future surveillance studies.


Subject(s)
Coleoptera , Hypocreales , Juglans , Plant Diseases , Animals , Coleoptera/microbiology , Hypocreales/genetics , Juglans/microbiology , Microsatellite Repeats/genetics , Plant Diseases/microbiology , Tennessee
3.
Front Genet ; 13: 861398, 2022.
Article in English | MEDLINE | ID: mdl-35480304

ABSTRACT

Pyrus calleryana Decne. (Callery pear) is a deciduous tree native to China, Japan, Korea, and Taiwan. It is a popular ornamental tree in the United States (US) with early spring blooms and vibrant fall color. There are at least 26 cultivars of P. calleryana available in the US of which "Bradford" is the most well-known. Open-pollinated P. calleryana escapees are becoming one of the most common invasive tree species in the eastern United States. Developing better management practices for invasive P. calleryana requires detailed knowledge about reproductive biology and genetic diversity of the species, however, little is currently known about genetic variability within those open-pollinated populations. We investigated genetic diversity and population structure of non-cultivated, escaped P. calleryana populations within a ∼177 km radius in the southeastern United States. Because P. calleryana exhibits a range of morphological variation with great evolutionary potential, we hypothesized that a high genetic diversity would be manifested among escaped P. calleryana. Using 15 previously developed microsatellite loci, we genotyped 180 open-pollinated P. calleryana individuals that were collected across six naturally occurring sites in Tennessee, Georgia, and South Carolina, United States. Our results demonstrated the presence of a population structure with high genetic diversity, high gene flow, and high genetic differentiation between individuals across collection sites. Our results revealed that P. calleryana populations had differentiated shortly after the introduction to the US, most likely from specimens imported from Asia, consistent with historical records and our prior findings. The high invasive potential of the species is perhaps best underscored by transformation of P. calleryana specimens introduced from Asia into escape populations at continental scale across the United States. Our data also provided novel insight into potential issues that could be problematic for the future as P. calleryana may pose a potential threat to the economy, ecology, and native biodiversity in invaded areas.

4.
Plant Dis ; 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35471076

ABSTRACT

Diplodia corticola is a fungal pathogen causing oak dieback in Quercus (oak) spp. in parts of North America, northern Africa, and Europe (Ferreira et al., 2021; Smahi et al., 2017; Tsopelas et al., 2018). In August 2021, a single mature white oak (Q. alba) exhibiting wilt symptoms, vascular discoloration, and interveinal chlorosis was observed in Cove Lake State Park in Campbell County, Tennessee, U.S.A. Small sections of phloem tissues were cut from the margins of discolored vasculature of a single wilt symptomatic branch with a sterile scalpel and surface sterilized following Parra et al. (2020). Surface sterilized wood chips were plated onto potato dextrose agar amended with antibiotics (PDA++) following Gazis et al. (2018). Three days after plating, we recovered a single fungal isolate from wood chips that when grown in ½ PDA resembled D. corticola, having irregular margins and white aerial mycelia that progressively turned greyish-black 15 days after sub-culturing (Alves et al., 2004). Total genomic DNA was extracted from the isolate following Gazis et al. (2018). The internal transcribed spacer (ITS) was then amplified using the ITS1 and ITS4 primers and the subsequent PCR product was sequenced. Resulting reads were assembled into a consensus sequence and identity was assigned using BLAST on the NCBI nucleotide database. The assembled sequence (accession OM716006) had a 100% identity match with D. corticola type culture CBS 112549 (accession NR_111152). To complete Koch's postulates and identify potential host range, 5 red oaks (Q. rubra; 2-3 yrs old; caliper 14.7 ± 2 mm) and 5 white oaks (Q. alba; 2-3 yrs old; caliper 22.8 ± 2.3 mm) were inoculated with D. corticola (isolate DC_2.5). Trees were inoculated 15 cm above the soil line in a greenhouse with a 3 mm diameter plug of a 10-day old culture of D. corticola grown on PDA following Sitz et al. (2017). As a negative control, 5 red and 5 white oaks were inoculated with a 3 mm diameter plug of PDA. For each species, trees were sampled when seepage was observed from D. corticola inoculated sites (15 days post-inoculation for red and white oaks). At time of sampling, bark adjacent to inoculation sites on each tree was removed and cankers were photographed. Using a sterile scalpel, four wood chips were cut from canker margins and placed onto PDA++. For all trees, canker areas were measured using ImageJ software (Rasband, 2012). Recovered isolate identities were confirmed by extracting total genomic DNA as described above (Gazis et al. 2018) and PCR amplification of the ITS, large ribosomal subunit (LSU), and elongation factor 1-α (ef1-α) following (Ferreira et al., 2021). Diplodia corticola was reisolated from wood chips of D. corticola inoculated red (5/5 trees) and white (5/5 trees) oaks and ITS (accession OM716954), LSU (accession OM716955), and ef1-α (accession OM752198) sequences matched D. corticola type culture 112549 ITS (100% identity), LSU (99.76%-100% identity; accession KF766323), and ef1-α (98%-98.9% identity; accession XM_020275852). All D. corticola inoculated trees exhibited seepage from inoculation sites with streaking present in vasculature. Cankers were significantly larger in D. corticola inoculated red (2.34 ± 1.36 cm; P=0.042) and white (2.96 ± 0.52 cm; P=0.00029) oaks compared to agar inoculated trees. To the best of our knowledge, this is the first report of D. corticola causing decline of oaks in Tennessee.

5.
Sci Rep ; 11(1): 21803, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750401

ABSTRACT

Understanding of the present-day genetic diversity, population structure, and evolutionary history of tree species can inform resource management and conservation activities, including response to pressures presented by a changing climate. Cercis canadensis (Eastern Redbud) is an economically valuable understory tree species native to the United States (U.S.) that is also important for forest ecosystem and wildlife health. Here, we document and explain the population genetics and evolutionary history of this deciduous tree species across its distributed range. In this study, we used twelve microsatellite markers to investigate 691 wild-type trees sampled at 74 collection sites from 23 Eastern U.S. states. High genetic diversity and limited gene flow were revealed in wild, natural stands of C. canadensis with populations that are explained by two major genetic clusters. These findings indicate that an ancient population bottleneck occurred coinciding with the last glacial maximum (LGM) in North America. The structure in current populations likely originated from an ancient population in the eastern U.S. that survived LGM and then later diverged into two contemporary clusters. Data suggests that populations have expanded since the last glaciation event from one into several post-glacial refugia that now occupy this species' current geographic range. Our enhanced understanding benchmarks the genetic variation preserved within this species and can direct future efforts in conservation, and resource utilization of adaptively resilient populations that present the greatest genetic and structural diversity.


Subject(s)
Fabaceae/genetics , Genetic Variation/genetics , Genetics, Population , Microsatellite Repeats/genetics , North America , Phylogeny
6.
Life (Basel) ; 11(6)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200292

ABSTRACT

Pyrus calleryana Decne. (Callery pear) includes cultivars that in the United States are popular ornamentals in commercial and residential landscapes. Last few decades, this species has increasingly naturalized across portions of the eastern and southern US. However, the mechanisms behind this plant's spread are not well understood. The genetic relationship of present-day P.calleryana trees with their Asian P. calleryana forebears (native trees from China, Japan, and Korea) and the original specimens of US cultivars are unknown. We developed and used 18 microsatellite markers to analyze 147 Pyrus source samples and to articulate the status of genetic diversity within Asian P. calleryana and US cultivars. We hypothesized that Asian P. calleryana specimens and US cultivars would be genetically diverse and would show genetic relatedness. Our data revealed high genetic diversity, high gene flow, and presence of population structure in P. calleryana, potentially relating to the highly invasive capability of this species. Strong evidence for genetic relatedness between Asian P. calleryana specimens and US cultivars was also demonstrated. Our data suggest the source for P. calleryana that have become naturalized in US was China. These results will help understand the genetic complexity of invasive P. calleryana when developing management for escaped populations: In follow-up studies, we use the gSSRs developed here to analyze P. calleryana escape populations from across US.

7.
Plants (Basel) ; 10(3)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807587

ABSTRACT

The Viburnum genus is of particular interest to horticulturalists, phylogeneticists, and biogeographers. Despite its popularity, there are few existing molecular markers to investigate genetic diversity in this large genus, which includes over 160 species. There are also few polymorphic molecular tools that can delineate closely related species within the genus. Viburnum farreri, a member of the Solenotinus subclade and one of the centers of diversity for Viburnum, was selected for DNA sequencing and development of genomic simple sequence repeats (gSSRs). In this study, 15 polymorphic gSSRs were developed and characterized for a collection of 19 V. farreri samples. Number of alleles per locus ranged from two- to- eight and nine loci had four or more alleles. Observed heterozygosity ranged from 0 to 0.84 and expected heterozygosity ranged from 0.10 to 0.80 for the 15 loci. Shannon diversity index values across these loci ranged from 0.21 to 1.62. The markers developed in this study add to the existing molecular toolkit for the genus and will be used in future studies investigating cross-transferability, genetic variation, and species and cultivar delimitation in the Viburnum genus and closely allied genera in the Adoxaceae and Caprifoliaceae.

8.
Plant Dis ; 105(10): 3171-3180, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33591833

ABSTRACT

Thousand cankers disease (TCD) is caused by the fungal pathogen Geosmithia morbida and vectored by the walnut twig beetle Pityophthorus juglandis. In infected walnut and butternut (Juglans spp.) hosts and wingnut species (Pterocarya spp.) hosts, tree decline and death results in ecological disruption and economic losses. A rapid molecular detection protocol for TCD using microsatellite markers can confirm the presence of insect vector or fungal pathogen DNA, but it requires specialized expensive equipment and technical expertise. Using four different experimental approaches, capillary and conventional gel electrophoresis, and traditional polymerase chain reaction (PCR) and quantitative PCR (qPCR), we describe simplified and inexpensive processes for diagnostic confirmation of TCD. The improved and rapid detection protocols reported in this study reduce time and equipment costs associated with detection of molecular pest and pathogen DNA by (1) using conventional gel electrophoresis or TaqMan molecular probes to elucidate the detection limits for G. morbida and P. juglandis DNA and (2) identifying resources that allow visualization of positive test results for infected host plant tissue samples. Conventional gel electrophoresis and TaqMan molecular probe protocols detected presence of DNA from TCD-associated fungal and insect samples. These procedural improvements can be readily adopted by diagnostic end-users and adapted for use with other complex disease systems to enable rapid pest and pathogen detection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Coleoptera , Juglans , Weevils , Animals , Electrophoresis , Plant Diseases
9.
Environ Entomol ; 49(6): 1263-1269, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33159439

ABSTRACT

Tapinoma sessile (Say) is a common ant throughout the United States that frequently relocates portions of its nests to form large polydomous colonies in urban areas. Despite widespread research on the control of T. sessile as a nuisance pest, relatively little work has focused on the biology of its nesting behavior and movement. We evaluated shade, moisture, and proximity to food as factors triggering colony movement in laboratory assays. Initially, T. sessile colonies moved to shaded artificial nest sites irrespective of arena moisture. Then, workers and brood were increasingly moved to moist artificial nest sites over time. Colonies moved workers and brood to near-food artificial nest sites over both 1 m and 6 m distances. Queens relocated to near-food nest sites over 1 m distances, but not 6 m distances, during the 49-d study. Results suggest that an increase either in moisture or food in proximity to a residence is likely to account for observed increases in T. sessile abundance near structures.


Subject(s)
Ants , Animals , Food , Movement , Nesting Behavior
10.
Ecol Evol ; 10(8): 3655-3670, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32313625

ABSTRACT

Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen-seed dispersal mechanisms. However, in the case of tree species, effective pollen-seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine-scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia-Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (H E = 0.63, H O = 0.34), and moderate genetic differentiation (F ST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia-Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.

11.
Molecules ; 24(20)2019 Oct 19.
Article in English | MEDLINE | ID: mdl-31635046

ABSTRACT

Sciadopitys verticillata (Sv) produces a white, sticky, latex-like resin with antimicrobial properties. The aims of this research were to evaluate the effects of this resin (Sv resin) on bacterial populations and to determine the impact of its primary volatile components on bioactivity. The impact of sample treatment on chemical composition of Sv resin was analyzed using Fourier transform infrared spectroscopy (FTIR) coupled with principal component analysis. The presence and concentration of volatiles in lyophilized resin were determined using gas chromatography/mass spectrometry (GC/MS). Changes in bacterial population counts due to treatment with resin or its primary volatile components were monitored. Autoclaving of the samples did not affect the FTIR spectra of Sv resin; however, lyophilization altered spectra, mainly in the CH and C=O regions. Three primary bioactive compounds that constituted >90% of volatiles (1R-α-pinene, tricyclene, and ß-pinene) were identified in Sv resin. Autoclaved resin impacted bacterial growth. The resin was stimulatory for some plant and foodborne pathogens (Pseudomonas fluorescens, P. syringae, and Xanthomonas perforans) and antimicrobial for others (Escherichia coli, Bacillus cereus, Agrobacterium tumefaciens, and Erwinia amylovora). Treatment with either 1R-α-pinene or ß-pinene reduced B. cereus population growth less than did autoclaved resin. The complex resin likely contains additional antimicrobial compounds that act synergistically to inhibit bacterial growth.


Subject(s)
Anti-Infective Agents/pharmacology , Resins, Plant/chemistry , Tracheophyta/metabolism , Volatile Organic Compounds/pharmacology , Anti-Infective Agents/chemistry , Bacteria/drug effects , Bacteria/growth & development , Drug Synergism , Food Microbiology , Gas Chromatography-Mass Spectrometry , Plant Pathology , Principal Component Analysis , Spectroscopy, Fourier Transform Infrared , Volatile Organic Compounds/chemistry
12.
Environ Entomol ; 48(4): 882-893, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31145452

ABSTRACT

Thousand cankers disease (TCD) results from the combined activity of the fungal pathogen, Geosmithia morbida Kolarík, Freeland, Utley, and Tisserat and its principle vector, Pityophthorus juglandis (Blackman) (Coleoptera: Curculionidae: Scolytinae) in Juglans L. spp. and Pterocarya Kunth spp. host plants. TCD has been reported from the eastern and western United States. To evaluate potential for other beetle species to vector the fungus in east Tennessee, specimens were collected using ethanol-baited traps that were suspended beneath crowns of TCD-symptomatic trees. Associations of G. morbida with insect species collected in traps were assessed in an unsuccessful, preliminary culture-based fungal assay, and then with a molecular-based detection method. For culture-based assays, rinsate from washed, individual insects was plated on nutrient media and growing colonies were subcultured to obtain axenic G. morbida cultures for identification. For the molecular-based method, G. morbida presence was detected by amplifying the previously developed, species-specific microsatellite locus GS004. Capillary electrophoresis was used to detect the amplified amplicons and representative reactions were validated using Sanger sequencing. Eleven beetle species were found to carry G. morbida, including Cnestus mutilatus (Blandford), Dryoxylon onoharaensum (Murayama), Hylocurus rudis (LeConte), Monarthrum fasciatum (Say), Monarthrum mali (Fitch), Xyleborinus saxesenii (Ratzeburg), Xylosandrus crassiusculus (Motschulsky), Xylosandrus germanus (Blandford) (all Coleoptera: Curculionidae: Scolytinae), Stenomimus pallidus (Boheman) (Coleoptera: Curculionidae: Cossoninae), Oxoplatypus quadridentatus (Olivier) (Coleoptera: Curculionidae: Platypodinae), and Xylops basilaris (Say) (Coleoptera: Bostrichidae). These findings raise concerns that alternative subcortical insect species that already occur within quarantined habitats can sustain incidence of introduced G. morbida and contribute to spread within the native range of black walnut, Juglans nigra L., in the eastern United States.


Subject(s)
Coleoptera , Juglans , Weevils , Animals , Ecosystem , Insect Vectors , Tennessee
13.
PLoS One ; 14(2): e0212505, 2019.
Article in English | MEDLINE | ID: mdl-30817757

ABSTRACT

The digestive system of selected phytophagous insects has been examined as a potential prospecting resource for identification of novel cellulolytic enzymes with potential industrial applications. In contrast to other model species, however, limited detailed information is available that characterizes cellulolytic activity and systems in basal hexapod groups. As part of a screening effort to identify insects with highly active cellulolytic systems, we have for the first time, identified species of Zygentoma that displayed the highest relative cellulase activity levels when compared to all other tested insect groups under the experimental conditions, including model species for cellulolytic systems such as termite and cockroach species in Rhinotermitidae (formerly Isoptera) and Cryptocercidae (formerly Blattodea). The goal of the present study was to provide a morphohistological characterization of cellulose digestion and to identify highly active cellulase enzymes present in digestive fluids of Zygentoma species. Morphohistological characterization supported no relevant differences in the digestive system of firebrat (Thermobia domestica) and the gray silverfish (Ctenolepisma longicaudata). Quantitative and qualitative cellulase assays identified the foregut as the region with the highest levels of cellulase activity in both T. domestica and C. longicaudata. However, T. domestica was found to have higher endoglucanase, xylanase and pectinase activities compared to C. longicaudata. Using nano liquid chromatography coupled to tandem mass spectrometry (nanoLC/MS/MS) and a custom gut transcriptome we identified cellulolytic enzymes from digestive fluids of T. domestica. Among the identified enzymes we report putative endoglucanases matching to insect or arthropod enzymes and glucan endo-1,6-ß-glucosidases matching bacterial enzymes. These findings support combined activities of endogenous and symbiont-derived plant cell wall degrading enzymes in lignocellulose digestion in Zygentoma and advance our understanding of cellulose digestion in a primitive insect group.


Subject(s)
Cellulase/metabolism , Insect Proteins/metabolism , Insecta/enzymology , Animals , Cellulase/genetics , Cockroaches/enzymology , Cockroaches/genetics , Cockroaches/microbiology , Digestive System/anatomy & histology , Digestive System/enzymology , Digestive System/microbiology , Endo-1,4-beta Xylanases/metabolism , Insect Proteins/genetics , Insecta/genetics , Insecta/microbiology , Isoptera/enzymology , Isoptera/genetics , Isoptera/microbiology , Lepisma/enzymology , Lepisma/genetics , Lepisma/microbiology , Models, Biological , Polygalacturonase/metabolism , Species Specificity , Transcriptome
14.
Elife ; 72018 07 31.
Article in English | MEDLINE | ID: mdl-30063003

ABSTRACT

The origin of the insect odorant receptor (OR) gene family has been hypothesized to have coincided with the evolution of terrestriality in insects. Missbach et al. (2014) suggested that ORs instead evolved with an ancestral OR co-receptor (Orco) after the origin of terrestriality and the OR/Orco system is an adaptation to winged flight in insects. We investigated genomes of the Collembola, Diplura, Archaeognatha, Zygentoma, Odonata, and Ephemeroptera, and find ORs present in all insect genomes but absent from lineages predating the evolution of insects. Orco is absent only in the ancestrally wingless insect lineage Archaeognatha. Our new genome sequence of the zygentoman firebrat Thermobia domestica reveals a full OR/Orco system. We conclude that ORs evolved before winged flight, perhaps as an adaptation to terrestriality, representing a key evolutionary novelty in the ancestor of all insects, and hence a molecular synapomorphy for the Class Insecta.


Subject(s)
Evolution, Molecular , Insecta/genetics , Multigene Family/genetics , Receptors, Odorant/genetics , Animals , Ephemeroptera/genetics , Genome, Insect/genetics , Insect Proteins/genetics , Odonata/genetics , Phylogeny , Receptors, Odorant/classification
15.
Fungal Biol ; 122(4): 241-253, 2018 04.
Article in English | MEDLINE | ID: mdl-29551198

ABSTRACT

Thousand Cankers Disease (TCD) affects Juglans and Pterocarya species. This disease poses not only a major threat to the nut and timber industries but also to native stands of walnut trees. Galleries created by Pityophthorus juglandis (vector) are colonized by the fungus Geosmithia morbida (causal agent of necrosis). It is unknown if other fungi colonizing these galleries might act antagonistically towards G. morbida. The objectives of this study were to: (1) characterize the fungal community associated with TCD-infected trees and (2) develop a pilot study addressing their potential antagonism towards G. morbida. We collected non-Geosmithia fungi from ten TCD-infected walnut trees from California and Tennessee. Four hundred and fifty-seven isolates, representing sixty-five Operational Taxonomic Units (99 % ITS similarity) were obtained. Fungal communities were found to be highly diverse. Ophiostoma dominated the communities associated with TCD-compromised trees from California, whereas Trichoderma dominated TCD-compromised trees in Tennessee. Six Trichoderma isolates showed varying levels of antagonism against three isolates of G. morbida, suggesting potential applications for the biological control of TCD. Furthermore, results from this study contribute to the growing knowledge about the observed differential disease development between the western and eastern USA and could overall impact our understanding of TCD etiology.


Subject(s)
Hypocreales/isolation & purification , Juglans/microbiology , Mycobiome , Ophiostoma/isolation & purification , Plant Diseases/microbiology , Trichoderma/isolation & purification , Weevils/microbiology , Animals , California , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Hypocreales/growth & development , Juglans/parasitology , Microbial Interactions , Ophiostoma/growth & development , Phylogeny , Pilot Projects , Sequence Analysis, DNA , Tennessee , Trichoderma/growth & development , Weevils/growth & development
16.
PLoS One ; 13(1): e0185087, 2018.
Article in English | MEDLINE | ID: mdl-29304036

ABSTRACT

Thousand Cankers Disease (TCD) of Juglans and Pterocarya (Juglandaceae) involves a fungal pathogen, Geosmithia morbida, and a primary insect vector, Pityophthorus juglandis. TCD was described originally from dying Juglans nigra trees in the western United States (USA), but it was reported subsequently from the eastern USA and northern Italy. The disease is often difficult to diagnose due to the absence of symptoms or signs on the bark surface of the host. Furthermore, disease symptoms can be confused with those caused by other biotic and abiotic agents. Thus, there is a critical need for a method for rapid detection of the pathogen and vector of TCD. Using species-specific microsatellite DNA markers, we developed a molecular protocol for the detection of G. morbida and P. juglandis. To demonstrate the utility of the method for delineating TCD quarantine zones, we tested whether geographical occurrence of symptoms and signs of TCD was correlated with molecular evidence for the presence of the cryptic TCD organisms. A total of 1600 drill cores were taken from branch sections collected from three regions (n = 40 trees for each location): California-J. hindsii (heavy disease incidence); Tennessee-J. nigra (mild disease incidence); and outside the known TCD zone (Missouri-J. nigra, no record of the disease). California samples had the highest incidence of the TCD organisms (85%, 34/40). Tennessee had intermediate incidence (42.5%, 17/40), whereas neither organism was detected in samples from Missouri. The low cost molecular protocol developed here has a high degree of sensitivity and specificity, and it significantly reduces sample-processing time, making the protocol a powerful tool for rapid detection of TCD.


Subject(s)
Hypocreales/genetics , Hypocreales/pathogenicity , Insect Vectors/genetics , Insect Vectors/microbiology , Juglans/microbiology , Plant Diseases/microbiology , Weevils/genetics , Weevils/microbiology , Animals , California , DNA, Fungal/genetics , Genetic Techniques , Hypocreales/isolation & purification , Microsatellite Repeats , Missouri , Species Specificity , Tennessee
17.
J Insect Sci ; 17(3)2017 May 01.
Article in English | MEDLINE | ID: mdl-28973569

ABSTRACT

Thousand cankers disease, caused by the invasive bark beetle Pityophthorus juglandis Blackman and an associated fungal pathogen Geosmithia morbida M.Kolarík, E. Freeland, C. Utley, N. Tisserat, currently threatens the health of eastern black walnut (Juglans nigra L.) in North America. Both the beetle and pathogen have expanded beyond their native range via transport of infested walnut wood. Geosmithia morbida can develop in seedlings following inoculation, but the ability of P. juglandis to colonize young, small diameter trees has not been investigated. This study assessed the beetle's colonization behavior on J. nigra nursery trees. Beetles were caged directly onto the stems of walnut seedlings from five nursery sources representing a range of basal stem diameter classes. Seedlings were also exposed to P. juglandis in a limited choice, field-based experiment comparing pheromone-baited and unbaited stems. When beetles were caged directly onto stems, they probed and attempted to colonize seedlings across the range of diameters and across sources tested, including stems as small as 0.5 cm in diameter. In the field experiment, beetles only attempted to colonize seedlings that were baited with a pheromone lure and appeared to prefer (though not statistically significant) the larger diameter trees. Despite several successful penetrations into the phloem, there was no evidence of successful progeny development within the young trees in either experiment. Further investigation is recommended to better elucidate the risk nursery stock poses as a pathway for thousand cankers disease causal organisms.


Subject(s)
Host-Parasite Interactions , Insect Vectors/physiology , Juglans/parasitology , Weevils/physiology , Animals , Ascomycota/physiology , Female , Herbivory , Insect Vectors/microbiology , Juglans/microbiology , Male , Plant Diseases , Weevils/microbiology
18.
Environ Entomol ; 46(5): 1120-1129, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28961948

ABSTRACT

Knowledge about which bark and ambrosia beetle species are active and at what heights in black walnut canopies is not well understood. Neither is the role of these beetles in spreading Thousand Cankers Disease. To assist with future planned research, which will assess the extent to which these beetle species are associated with Geosmithia morbida Kolarík, Freeland, Utley, and Tisserat (Ascomycota: Hypocreales: Bionectriaceae), experiments were undertaken to monitor bark and ambrosia beetles in urban landscapes and parks in Tennessee between 2011 and 2013. Within mature walnut tree canopies, sticky panel, modified soda bottle, and Lindgren traps were deployed at different heights, with and without ethanol as an attractant and with and without walnut stem sections, or in situ limbs that had been girdled or injection with ethanol to simulate stressed tree tissues. Bark and ambrosia beetle species (Coleoptera: Curculionidae: Scolytinae) collected in greatest abundance included Ambrosiodmus rubricollis (Eichhoff), Ambrosiophilus atratus (Eichhoff), Cnestus mutilatus (Blandford), Dryoxylon onoharaense (Murayama), Euwallacea validus (Eichhoff), Monarthrum fasciatum (Say), Monarthrum mali (Fitch), Xyleborinus saxesenii (Ratzeburg), Xyleborus affinis Eichhoff, Xyleborus ferrugineus (Fabricius), Xylosandrus crassiusculus (Motschulsky), and Xylosandrus germanus (Blandford). C. mutilatus, X. saxesenii, and X. crassiusculus were more active higher in trees than most other species and were strongly attracted to ethanol via all means of lure deployment. C. mutilatus, which were captured from April through October and increased in abundance across the 3-yr study, were most abundant in late May with a second activity period in late August.


Subject(s)
Insect Control/instrumentation , Juglans , Weevils , Animals , Ethanol , Female
19.
Insect Sci ; 21(5): 609-18, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24318365

ABSTRACT

Insects are a largely unexploited resource in prospecting for novel cellulolytic enzymes to improve the production of ethanol fuel from lignocellulosic biomass. The cost of lignocellulosic ethanol production is expected to decrease by the combination of cellulose degradation (saccharification) and fermentation of the resulting glucose to ethanol in a single process, catalyzed by the yeast Saccharomyces cerevisiae transformed to express efficient cellulases. While S. cerevisiae is an established heterologous expression system, there are no available data on the functional expression of insect cellulolytic enzymes for this species. To address this knowledge gap, S. cerevisiae was transformed to express the full-length cDNA encoding an endoglucanase from the red flour beetle, Tribolium castaneum (TcEG1), and evaluated the activity of the transgenic product (rTcEG1). Expression of the TcEG1 cDNA in S. cerevisiae was under control of the strong glyceraldehyde-3 phosphate dehydrogenase promoter. Cultured transformed yeast secreted rTcEG1 protein as a functional ß-1,4-endoglucanase, which allowed transformants to survive on selective media containing cellulose as the only available carbon source. Evaluation of substrate specificity for secreted rTcEG1 demonstrated endoglucanase activity, although some activity was also detected against complex cellulose substrates. Potentially relevant to uses in biofuel production rTcEG1 activity increased with pH conditions, with the highest activity detected at pH 12. Our results demonstrate the potential for functional production of an insect cellulase in S. cerevisiae and confirm the stability of rTcEG1 activity in strong alkaline environments.


Subject(s)
Cellulase/genetics , Gene Expression , Insect Proteins/genetics , Saccharomyces cerevisiae/genetics , Tribolium/genetics , Animals , Biofuels/analysis , Cellulase/metabolism , Cellulose/metabolism , DNA, Complementary/genetics , DNA, Complementary/metabolism , Ethanol/metabolism , Insect Proteins/metabolism , Organisms, Genetically Modified/genetics , Organisms, Genetically Modified/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Tribolium/metabolism
20.
J Insect Physiol ; 57(2): 300-6, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21126522

ABSTRACT

The availability of sequenced insect genomes has allowed for discovery and functional characterization of novel genes and proteins. We report use of the Tribolium castaneum (Herbst) (red flour beetle) genome to identify, clone, express, and characterize a novel endo-ß-1,4-glucanase we named TcEG1 (T. castaneum endoglucanase 1). Sequence analysis of a full-length TcEG1 cDNA clone (1356bp) revealed sequence homology to enzymes in glycosyl hydrolase family 9 (GHF9), and verified presence of a change (Gly for Ser) in the conserved catalytic domain for GHF9 cellulases. This TcEG1 cDNA clone was predicted to encode a 49.5kDa protein with a calculated pI of 5.39. Heterologous expression of TcEG1 in Drosophila S2 cell cultures resulted in secretion of a 51-kDa protein, as determined by Western blotting. The expressed protein was used to characterize TcEG1 enzymatic activity against two cellulose substrates to determine its specificity and stability. Our data support that TcEG1 as a novel endo-ß-1,4-glucanase, the first functional characterization of a cellulase enzyme derived from an insect genome with potential applications in the biofuel industry due to its high relative activity at alkaline pH.


Subject(s)
Cellulase/genetics , Tribolium/enzymology , Tribolium/genetics , Amino Acid Sequence , Animals , Base Sequence , Cell Culture Techniques , Cellulase/chemistry , Cellulase/metabolism , Cloning, Molecular , DNA, Complementary/genetics , Drosophila/enzymology , Drosophila/genetics , Drosophila/metabolism , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Isoptera/enzymology , Isoptera/genetics , Isoptera/metabolism , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Tribolium/classification , Tribolium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL