Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 25(4): 1936-1961, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38438802

ABSTRACT

Induction of DNA damage triggers rapid phosphorylation of the histone H2A.X (γH2A.X). In animals, mediator of DNA damage checkpoint 1 (MDC1) binds γH2A.X through a tandem BRCA1 carboxyl-terminal (tBRCT) domain and mediates recruitment of downstream effectors of DNA damage response (DDR). However, readers of this modification in plants have remained elusive. We show that from the Arabidopsis BRCT domain proteome, BCP1-4 proteins with tBRCT domains are involved in DDR. Through its tBRCT domain BCP4 binds γH2A.X in vitro and localizes to DNA damage-induced foci in an H2A.X-dependent manner. BCP4 also contains a domain that interacts directly with NBS1 and thus acts as a functional counterpart of MDC1. We also show that BCP1, that contains two tBRCT domains, co-localizes with γH2A.X but it does not bind γH2A.X suggesting functional similarity with human PAXIP1. A phylogenetic analysis supports that PAXIP1 and MDC1 in metazoa and their plant counterparts evolved independently from common ancestors with tBRCT domains. Collectively, our study reveals missing components and provides mechanistic and evolutionary insights into plant DDR.


Subject(s)
DNA Damage , Nuclear Proteins , Animals , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phylogeny , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Phosphorylation/genetics , DNA Repair
2.
J Exp Bot ; 75(5): 1265-1273, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-37940194

ABSTRACT

Calcium is a universal messenger in different kingdoms of living organisms and regulates most physiological processes, including defense against pathogens. The threat of viral infections in humans has become very clear in recent years, and this has triggered detailed research into all aspects of host-virus interactions, including the suppression of calcium signaling in infected cells. At the same time, however, the threat of plant viral infections is underestimated in society, and research in the field of calcium signaling during plant viral infections is scarce. Here we highlight an emerging role of calcium signaling for antiviral protection in plants, in parallel with the known evidence from studies of animal cells. Obtaining more knowledge in this domain might open up new perspectives for future crop protection and the improvement of food security.


Subject(s)
Plant Viruses , Virus Diseases , Humans , Animals , Calcium Signaling , Plants/genetics , Plant Viruses/physiology , Antiviral Agents , Plant Diseases , Plant Immunity
SELECTION OF CITATIONS
SEARCH DETAIL
...