Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JIMD Rep ; 6: 117-25, 2012.
Article in English | MEDLINE | ID: mdl-23430949

ABSTRACT

Even though lysosomal storage disorders (LSDs) are considered to be orphan diseases, they pose a highly relevant cause for morbidity and mortality as their cumulative prevalence is estimated to be 1:4,000. This is especially important as treatment in form of enzyme replacement therapy, substrate reduction therapy or stem cell transplantation is amenable for some LSDs. It is plausible that an early start of treatment might improve the overall prognosis and, even more important, prevent irreversible damage of key organs. To get a more precise insight into the real frequency of some LSDs in the general population, we screened 40,024 samples from the Hungarian newborn screening (NBS) program in Szeged for Fabry disease (FD), Gaucher disease (GD), Pompe disease (PD), and Niemann-Pick A/B (NPB) disease using tandem mass spectrometry. Altogether, 663 samples (1.66%) were submitted for retesting. Genetic confirmation was carried out for 120 samples with abnormal screening results after retesting, which identified three cases of GD, three cases of FD, nine cases of PD, and two cases with NPB. In some cases, we detected up to now unknown mutations - one in NPB and seven in PD - which raise questions about the clinical consequences of a NBS in the sense of late-onset manifestations. Overall, we conclude that screening for LSDs by tandem MS/MS followed by a genetic workup in identified patients is a robust, easy, valid, and feasible technology in newborn screening programs. Furthermore, early diagnosis of LSDs gives a chance to early treatment, but needs more clinical long-term data especially regarding the consequence of private mutations.

2.
Cell ; 135(3): 497-509, 2008 Oct 31.
Article in English | MEDLINE | ID: mdl-18984161

ABSTRACT

Spliceosomal small nuclear ribonucleoproteins (snRNPs) are essential components of the nuclear pre-mRNA processing machinery. A hallmark of these particles is a ring-shaped core domain generated by the binding of Sm proteins onto snRNA. PRMT5 and SMN complexes mediate the formation of the core domain in vivo. Here, we have elucidated the mechanism of this reaction by both biochemical and structural studies. We show that pICln, a component of the PRMT5 complex, induces the formation of an otherwise unstable higher-order Sm protein unit. In this state, the Sm proteins are kinetically trapped, preventing their association with snRNA. The SMN complex subsequently binds to these Sm protein units, dissociates pICln, and catalyzes ring closure on snRNA. Our data identify pICln as an assembly chaperone and the SMN complex as a catalyst of spliceosomal snRNP formation. The mode of action of this combined chaperone/catalyst system is reminiscent of the mechanism employed by DNA clamp loaders.


Subject(s)
Protein Methyltransferases/chemistry , Ribonucleoproteins, Small Nuclear/metabolism , HeLa Cells , Humans , Models, Biological , Molecular Chaperones/metabolism , Nerve Tissue Proteins/metabolism , Protein Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases , RNA/metabolism , RNA-Binding Proteins/metabolism , Ribonucleoproteins, Small Nuclear/chemistry , Survival of Motor Neuron 1 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...