Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
HGG Adv ; : 100317, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38851890

ABSTRACT

Chronic inflammatory demyelinating polyneuropathy (CIDP) is a rare, immune-mediated disorder in which an aberrant immune response causes demyelination and axonal damage of the peripheral nerves. Genetic contribution to CIDP is unclear and no genome-wide association study (GWAS) has been reported so far. In this study, we aimed to identify CIDP-related risk loci, genes and pathways. We first focused on CIDP, and 516 CIDP cases and 403,545 controls were included in the GWAS analysis. We also investigated genetic risk for inflammatory polyneuropathy (IP), in which we performed a GWAS study using FinnGen data and combined the results with GWAS from UK biobank (UKBB) using a fixed-effect meta-analysis. A total of 1,261 IP cases and 823,730 controls were included in the analysis. Stratified analyses by gender were performed. Mendelian randomization (MR), colocalization, and transcriptome-wide association study (TWAS) analyses were performed to identify associated genes. Gene-set analyses were conducted to identify associated pathways. We identified one genome-wide significant locus at 20q13.33 for CIDP risk among women; the top variant located at the intron region of gene CDH4. Sex-combined MR, colocalization and TWAS analyses identified three candidate pathogenic genes for CIDP, five genes for IP. MAGMA gene-set analyses identified a total of 18 pathways related to IP or CIDP. Sex-stratified analyses identified three genes for IP among males; and two genes for IP among females. Our study identified suggestive risk genes and pathways for CIDP and IP. Functional analysis should be conducted to further confirm these associations.

2.
medRxiv ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014089

ABSTRACT

Acne vulgaris is a common skin disease that affects >85% of teenage young adults among which >8% develop severe lesions that leaves permanent scars. Genetic heritability studies of acne in twin cohorts have estimated that the heritability for acne is 80%. Previous genome-wide association studies (GWAS) have identified 50 genetic loci associated with increased risk of developing acne when compared to healthy individuals. However only a few studies have investigated genetic association with disease severity. GWAS of disease progression may provide a more effective approach to unveil potential disease modifying therapeutic targets. Here, we performed a multi-ethnic GWAS analysis to capture disease severity in acne patients by using individuals with normal acne as a control. Our cohort consists of a total of 2,956 participants, including 290 severe acne cases and 930 normal acne controls from FinnGen, and 522 cases and 1,214 controls from BioVU. We also performed mendelian randomization (MR), colocalization analyses and transcriptome-wide association study (TWAS) to identify putative causal genes. Lastly, we performed gene-set enrichment analysis using MAGMA to implicate biological pathways that drive disease severity in Acne. We identified two new loci associated with acne severity at the genome-wide significance level, six novel associated genes by MR, colocalization and TWAS analyses, including genes CDC7, SLC7A1, ADAM23, TTLL10, CDK20 and DNAJA4 , and 5 novel pathways by MAGMA analyses. Our study suggests that the etiologies of acne susceptibility and severity have limited overlap, with only 26% of known acne risk loci presenting nominal association with acne severity and none of the novel severity associated genes reported as associated with acne risk in previous GWAS.

3.
Elife ; 122023 05 30.
Article in English | MEDLINE | ID: mdl-37249220

ABSTRACT

Background: A salutary effect of treatments for Gaucher disease (GD) has been a reduction in the incidence of avascular osteonecrosis (AVN). However, there are reports of AVN in patients receiving enzyme replacement therapy (ERT) , and it is not known whether it is related to individual treatments, GBA genotypes, phenotypes, biomarkers of residual disease activity, or anti-drug antibodies. Prompted by development of AVN in several patients receiving ERT, we aimed to delineate the determinants of AVN in patients receiving ERT or eliglustat substrate reduction therapy (SRT) during 20 years in a tertiary referral center. Methods: Longitudinal follow-ups of 155 GD patients between 2001 and 2021 were analyzed for episodes of AVN on therapy, type of therapy, GBA1 genotype, spleen status, biomarkers, and other disease indicators. We applied mixed-effects logistic model to delineate the independent correlates of AVN while receiving treatment. Results: The patients received cumulative 1382 years of treatment. There were 16 episodes of AVN in 14 patients, with two episodes, each occurring in two patients. Heteroallelic p.Asn409Ser GD1 patients were 10 times (95% CI, 1.5-67.2) more likely than p.Asn409Ser homozygous patients to develop osteonecrosis during treatment. History of AVN prior to treatment initiation was associated with 4.8-fold increased risk of AVN on treatment (95% CI, 1.5-15.2). The risk of AVN among patients receiving velaglucerase ERT was 4.68 times higher compared to patients receiving imiglucerase ERT (95% CI, 1.67-13). No patient receiving eliglustat SRT suffered AVN. There was a significant correlation between GlcSph levels and AVN. Together, these biomarkers reliably predicted risk of AVN during therapy (ROC AUC 0.894, p<0.001). Conclusions: There is a low, but significant risk of AVN in GD in the era of ERT/SRT. We found that increased risk of AVN was related to GBA genotype, history of AVN prior to treatment initiation, residual serum GlcSph level, and the type of ERT. No patient receiving SRT developed AVN. These findings exemplify a new approach to biomarker applications in a rare inborn error of metabolism to evaluate clinical outcomes in comprehensively followed patients and will aid identification of GD patients at higher risk of AVN who will benefit from closer monitoring and treatment optimization. Funding: LSD Training Fellowship from Sanofi to MB.


Subject(s)
Gaucher Disease , Osteonecrosis , Humans , Gaucher Disease/complications , Gaucher Disease/drug therapy , Gaucher Disease/genetics , Tertiary Care Centers , Biomarkers/metabolism , Osteonecrosis/complications , Osteonecrosis/epidemiology , Risk Assessment
4.
Elife ; 112022 08 16.
Article in English | MEDLINE | ID: mdl-35972072

ABSTRACT

Background: Neuronopathic Gaucher disease (nGD) is a rare neurodegenerative disorder caused by biallelic mutations in GBA and buildup of glycosphingolipids in lysosomes. Neuronal injury and cell death are prominent pathological features; however, the role of GBA in individual cell types and involvement of microglia, blood-derived macrophages, and immune infiltrates in nGD pathophysiology remains enigmatic. Methods: Here, using single-cell resolution of mouse nGD brains, lipidomics, and newly generated biomarkers, we found induction of neuroinflammation pathways involving microglia, NK cells, astrocytes, and neurons. Results: Targeted rescue of Gba in microglia and neurons, respectively, in Gba-deficient, nGD mice reversed the buildup of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph), concomitant with amelioration of neuroinflammation, reduced serum neurofilament light chain (Nf-L), and improved survival. Serum GlcSph concentration was correlated with serum Nf-L and ApoE in nGD mouse models as well as in GD patients. Gba rescue in microglia/macrophage compartment prolonged survival, which was further enhanced upon treatment with brain-permeant inhibitor of glucosylceramide synthase, effects mediated via improved glycosphingolipid homeostasis, and reversal of neuroinflammation involving activation of microglia, brain macrophages, and NK cells. Conclusions: Together, our study delineates individual cellular effects of Gba deficiency in nGD brains, highlighting the central role of neuroinflammation driven by microglia activation. Brain-permeant small-molecule inhibitor of glucosylceramide synthase reduced the accumulation of bioactive glycosphingolipids, concomitant with amelioration of neuroinflammation involving microglia, NK cells, astrocytes, and neurons. Our findings advance nGD disease biology whilst identifying compelling biomarkers of nGD to improve patient management, enrich clinical trials, and illuminate therapeutic targets. Funding: Research grant from Sanofi; other support includes R01NS110354, Yale Liver Center P30DK034989, pilot project grant.


Subject(s)
Gaucher Disease , Animals , Biomarkers , Gaucher Disease/drug therapy , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Glycosphingolipids , Killer Cells, Natural/metabolism , Mice , Microglia/metabolism , Neuroinflammatory Diseases , Pilot Projects
5.
Front Med (Lausanne) ; 9: 903838, 2022.
Article in English | MEDLINE | ID: mdl-35814780

ABSTRACT

Introduction: Up to 30% of individuals with hemophilia A develop inhibitors to replacement factor VIII (FVIII), rendering the treatment ineffective. The underlying mechanism of inhibitor development remains poorly understood. The My Life, Our Future Research Repository (MLOF RR) has gathered F8 and F9 mutational information, phenotypic data, and biological material from over 11,000 participants with hemophilia A (HA) and B as well as carriers enrolled across US hemophilia treatment centers, including over 5,000 whole-genome sequences. Identifying genes associated with inhibitors may contribute to our understanding of why certain patients develop those neutralizing antibodies. Aim and Methods: Here, we performed a genome-wide association study and gene-based analyses to identify genes associated with inhibitors in participants with HA from the MLOF RR. Results: We identify a genome-wide significant association within the human leukocyte antigen (HLA) locus in participants with HA with F8 intronic inversions. HLA typing revealed independent associations with the HLA alleles major histocompatibility complex, class II, DR beta 1 (HLA DRB1*15:01) and major histocompatibility complex, class II, DQ beta 1 (DQB1*03:03). Variant aggregation tests further identified low-frequency variants within GRID2IP (glutamate receptor, ionotropic, delta 2 [GRID2] interacting protein 1) significantly associated with inhibitors. Conclusion: Overall, our study confirms the association of DRB1*15:01 with FVIII inhibitors and identifies a novel association of DQB1*03:03 in individuals with HA carrying intronic inversions of F8. In addition, our results implicate GRID2IP, encoding GRID2-interacting protein, with the development of inhibitors, and suggest an unrecognized role of this gene in autoimmunity.

6.
BMC Bioinformatics ; 23(1): 232, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35710324

ABSTRACT

BACKGROUND: The Open Targets (OT) Platform integrates a wide range of data sources on target-disease associations to facilitate identification of potential therapeutic drug targets to treat human diseases. However, due to the complexity that targets are usually functionally pleiotropic and efficacious for multiple indications, challenges in identifying novel target to indication associations remain. Specifically, persistent need exists for new methods for integration of novel target-disease association evidence and biological knowledge bases via advanced computational methods. These offer promise for increasing power for identification of the most promising target-disease pairs for therapeutic development. Here we introduce a novel approach by integrating additional target-disease features with machine learning models to further uncover druggable disease to target indications. RESULTS: We derived novel target-disease associations as supplemental features to OT platform-based associations using three data sources: (1) target tissue specificity from GTEx expression profiles; (2) target semantic similarities based on gene ontology; and (3) functional interactions among targets by embedding them from protein-protein interaction (PPI) networks. Machine learning models were applied to evaluate feature importance and performance benchmarks for predicting targets with known drug indications. The evaluation results show the newly integrated features demonstrate higher importance than current features in OT. In addition, these also show superior performance over association benchmarks and may support discovery of novel therapeutic indications for highly pursued targets. CONCLUSION: Our newly generated features can be used to represent additional underlying biological relatedness among targets and diseases to further empower improved performance for predicting novel indications for drug targets through advanced machine learning models. The proposed methodology enables a powerful new approach for systematic evaluation of drug targets with novel indications.


Subject(s)
Drug Discovery , Machine Learning , Drug Discovery/methods , Gene Ontology , Humans , Power, Psychological , Protein Interaction Maps
7.
Mol Genet Metab Rep ; 29: 100798, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34485083

ABSTRACT

In Gaucher disease (GD), genetic deficiency of acid ß-glucosidase leads to accumulation of its substrate glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Lipid-laden cells, most prominently seen as macrophages engorged with GlcCer and GlcSph-laden lysosomes, trigger chronic metabolic inflammation and multisystemic phenotypes. Among the pleiotropic effects of inflammatory cascades, the induction of glucosylceramide synthase accentuates the primary metabolic defect. First-line therapies for adults with GD type 1 include Enzyme Replacement Therapy (ERT) and eliglustat Substrate Reduction Therapy (SRT). The ENCORE phase 3 clinical trial of eliglustat demonstrated non-inferiority compared to ERT. It is not known whether switching stable patients from long-term ERT to SRT results in the incremental reversal of the disease phenotype and its surrogate indicators. Herein, we report real-world experience from a single tertiary referral center of 38 adult GD type 1 patients, stable on long-term ERT (mean 13.3 years), who switched to eliglustat SRT (mean 3.1 years). After switch to SRT, there was significant reduction in spleen volume (P = 0.003) while liver volume, which was normal at baseline, remained unchanged. Platelet counts increased significantly (P = 0.026). Concomitantly, there was reduction of three validated biomarkers of Gaucher disease activity: plasma GlcSph decreased from 63.7 ng/ml (95% CI, 37.6-89.8) to 26.1 ng/ml (95% CI, 15.7-36.6) (P < 0.0001); chitotriosidase fell from 1136.6 nmol/ml/h (95% CI, 144.7-2128.6) to 466.9 nmol/ml/h (95% CI, 209.9-723.9) (P = 0.002); and glycoprotein non-metastatic melanoma B (gpNMB) decreased from 59.3 ng/ml (95% CI, 39.7-78.9) to 43.6 ng/ml (95% CI, 30.7-56.6) (P = 0.0006). There were no episodes of avascular necrosis or fractures in patients on SRT. Patients reported favorable experiences of switching from alternate week infusions to oral therapy. Collectively, these results demonstrate that the switch to eliglustat SRT from ERT leads to incremental response, even in stable patients after long-term ERT.

8.
PLoS One ; 16(7): e0253614, 2021.
Article in English | MEDLINE | ID: mdl-34242265

ABSTRACT

BACKGROUND: The identification of a target-indication pair is regarded as the first step in a traditional drug discovery and development process. Significant investment and attrition occur during discovery and development before a molecule is shown to be safe and efficacious for the selected indication and becomes an approved drug. Many drug targets are functionally pleiotropic and might be good targets for multiple indications. Methodologies that leverage years of scientific contributions on drug targets to allow systematic evaluation of other indication opportunities are critical for both patients and drug discovery and development scientists. METHODS: We introduced a network-based approach to systematically screen and prioritize disease indications for drug targets. The approach fundamentally integrates disease genomics data and protein interaction network. Further, the methodology allows for indication identification by leveraging state-of-art network algorithms to generate and compare the target and disease subnetworks. RESULTS: We first evaluated the performance of our method on recovering FDA approved indications for 15 randomly selected drug targets. The results showed superior performance when compared with other state-of-art approaches. Using this approach, we predicted novel indications supported by literature evidence for several highly pursued drug targets such as IL12/IL23 combination. CONCLUSIONS: Our results demonstrated a potential global approach for indication expansion strategies. The proposed methodology enables rapid and systematic evaluation of both individual and combined drug targets for novel indications. Additionally, this approach provides novel insights on expanding the role of genes and pathways for developing therapeutic intervention strategies.


Subject(s)
Algorithms , Drug Discovery/methods , Protein Interaction Maps/drug effects , Humans , Molecular Targeted Therapy/methods , Protein Interaction Mapping
9.
Hum Mol Genet ; 29(15): 2508-2522, 2020 08 29.
Article in English | MEDLINE | ID: mdl-32620959

ABSTRACT

Bardet-Biedl syndrome (BBS) is a pleiotropic autosomal recessive ciliopathy affecting multiple organs. The development of potential disease-modifying therapy for BBS will require concurrent targeting of multi-systemic manifestations. Here, we show for the first time that monosialodihexosylganglioside accumulates in Bbs2-/- cilia, indicating impairment of glycosphingolipid (GSL) metabolism in BBS. Consequently, we tested whether BBS pathology in Bbs2-/- mice can be reversed by targeting the underlying ciliary defect via reduction of GSL metabolism. Inhibition of GSL synthesis with the glucosylceramide synthase inhibitor Genz-667161 decreases the obesity, liver disease, retinal degeneration and olfaction defect in Bbs2-/- mice. These effects are secondary to preservation of ciliary structure and signaling, and stimulation of cellular differentiation. In conclusion, reduction of GSL metabolism resolves the multi-organ pathology of Bbs2-/- mice by directly preserving ciliary structure and function towards a normal phenotype. Since this approach does not rely on the correction of the underlying genetic mutation, it might translate successfully as a treatment for other ciliopathies.


Subject(s)
Bardet-Biedl Syndrome/genetics , Cilia/genetics , Ciliopathies/genetics , Proteins/genetics , Animals , Bardet-Biedl Syndrome/drug therapy , Bardet-Biedl Syndrome/pathology , Cell Differentiation/drug effects , Cilia/pathology , Ciliopathies/drug therapy , Ciliopathies/pathology , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Gangliosides/biosynthesis , Gangliosides/genetics , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/genetics , Glycosphingolipids/biosynthesis , Glycosphingolipids/genetics , Mice, Knockout
11.
J Neuromuscul Dis ; 5(2): 145-158, 2018.
Article in English | MEDLINE | ID: mdl-29614695

ABSTRACT

BACKGROUND: Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by the degeneration of alpha motor neurons in the spinal cord, leading to muscular atrophy. SMA is caused by deletions or mutations in the survival motor neuron 1 gene (SMN1). In humans, a nearly identical copy gene, SMN2, is present. Because SMN2 has been shown to decrease disease severity in a dose-dependent manner, SMN2 copy number is predictive of disease severity. OBJECTIVE: To develop a treatment algorithm for SMA-positive infants identified through newborn screening based upon SMN2 copy number. METHODS: A working group comprised of 15 SMA experts participated in a modified Delphi process, moderated by a neutral third-party expert, to develop treatment guidelines. RESULTS: The overarching recommendation is that all infants with two or three copies of SMN2 should receive immediate treatment (n = 13). For those infants in which immediate treatment is not recommended, guidelines were developed that outline the timing and appropriate screens and tests to be used to determine the timing of treatment initiation. CONCLUSIONS: The identification SMA affected infants via newborn screening presents an unprecedented opportunity for achievement of maximal therapeutic benefit through the administration of treatment pre-symptomatically. The recommendations provided here are intended to help formulate treatment guidelines for infants who test positive during the newborn screening process.


Subject(s)
Oligonucleotides, Antisense/therapeutic use , Oligonucleotides/therapeutic use , Spinal Muscular Atrophies of Childhood/drug therapy , Survival of Motor Neuron 1 Protein/genetics , Aftercare , Algorithms , Child Development , DNA Copy Number Variations , Delphi Technique , Disease Management , Early Medical Intervention , Electromyography , Gene Dosage , Humans , Infant , Infant, Newborn , Motor Skills , Neonatal Screening , Practice Guidelines as Topic , Severity of Illness Index , Spinal Muscular Atrophies of Childhood/diagnosis , Spinal Muscular Atrophies of Childhood/genetics , Spinal Muscular Atrophies of Childhood/physiopathology , Survival of Motor Neuron 2 Protein/genetics , Time
12.
Hum Gene Ther ; 26(3): 127-33, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25654329

ABSTRACT

With recent successes in gene therapy trials for hemophilia and retinal diseases, the promise and prospects for gene therapy are once again garnering significant attention. To build on this momentum, the National Institute of Neurological Disorders and Stroke and the Muscular Dystrophy Association jointly hosted a workshop in April 2014 on "Best Practices for Gene Therapy Programs," with a focus on neuromuscular disorders. Workshop participants included researchers from academia and industry as well as representatives from the regulatory, legal, and patient advocacy sectors to cover the gamut from preclinical optimization to intellectual property concerns and regulatory approval. The workshop focused on three key issues in the field: (1) establishing adequate scientific premise for clinical trials in gene therapy, (2) addressing regulatory process issues, and (3) intellectual property and commercialization issues as they relate to gene therapy. The outcomes from the discussions at this workshop are intended to provide guidance for researchers and funders in the gene therapy field.


Subject(s)
Genetic Therapy/methods , Genetic Therapy/standards , Neuromuscular Diseases/genetics , Neuromuscular Diseases/therapy , Clinical Trials as Topic , Genetic Therapy/legislation & jurisprudence , Government Regulation , Humans , Intellectual Property
13.
PDA J Pharm Sci Technol ; 68(6): 651-60, 2014.
Article in English | MEDLINE | ID: mdl-25475640

ABSTRACT

Next-generation sequencing has been evaluated at Genzyme as a means of identifying bioreactor contaminants due to its capability for detection of known and novel microbial species. In this approach, data obtained from next-generation sequencing is used to interrogate databases containing genomic sequences and identities of potential adventitious agents. We describe here the use of this approach to help identify the causative agent of a bioreactor contamination. We also present the results of spiking experiments to establish the limits of detection for DNA viruses, RNA viruses, and bacteria, in a background of Chinese hamster ovary cells, a cell line used for production of many human therapeutics. Using Illumina sequencing-based detection, all of the viruses included in this study were detected at less than 1 copy per cell, and bacteria were detected at 0.001 copy per cell. Thus, next-generation sequencing-based detection of adventitious agents is a valuable approach that can fill a critical unmet need in the detection of known and novel microorganisms in biopharmaceutical manufacturing. LAY ABSTRACT: Because biological products are manufactured in cells, the living environment must be kept sterile. Any introduction of microorganisms into the culture vessel may affect the growth and other biological properties of the cells or contaminate the product. It is therefore important to monitor the culture for such contaminants, but many methods can only detect a specific microorganism. In this study, we show that next-generation sequencing-based detection is a sensitive and complementary approach that can potentially detect a wide range of organisms.


Subject(s)
Bacteria/genetics , Bacteriological Techniques , Biological Products/analysis , Biopharmaceutics/methods , Drug Contamination/prevention & control , High-Throughput Nucleotide Sequencing , Virology/methods , Viruses/genetics , Animals , Bacteriological Techniques/standards , Biopharmaceutics/standards , Bioreactors , CHO Cells , Cell Culture Techniques , Cricetulus , DNA, Bacterial/genetics , DNA, Viral/genetics , High-Throughput Nucleotide Sequencing/standards , Humans , Limit of Detection , RNA, Viral/genetics , Reference Standards , Virology/standards
14.
Hum Mol Genet ; 21(15): 3397-407, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22563011

ABSTRACT

Genetic forms of polycystic kidney diseases (PKDs), including nephronophthisis, are characterized by formation of fluid-filled cysts in the kidneys and progression to end-stage renal disease. No therapies are currently available to treat cystic diseases, making it imperative to dissect molecular mechanisms in search of therapeutic targets. Accumulating evidence suggests a pathogenic role for glucosylceramide (GlcCer) in multiple forms of PKD. It is not known, however, whether other structural glycosphingolipids (GSLs) or bioactive signaling sphingolipids (SLs) modulate cystogenesis. Therefore, we set out to address the role of a specific GSL (ganglioside GM3) and signaling SL (sphingosine-1-phosphate, S1P) in PKD progression, using the jck mouse model of nephronopthisis. To define the role of GM3 accumulation in cystogenesis, we crossed jck mice with mice carrying a targeted mutation in the GM3 synthase (St3gal5) gene. GM3-deficient jck mice displayed milder PKD, revealing a pivotal role for ganglioside GM3. Mechanistic changes in regulation of the cell-cycle machinery and Akt-mTOR signaling were consistent with reduced cystogenesis. Dramatic overexpression of sphingosine kinase 1 (Sphk1) mRNA in jck kidneys suggested a pathogenic role for S1P. Surprisingly, genetic loss of Sphk1 exacerbated cystogenesis and was associated with increased levels of GlcCer and GM3. On the other hand, increasing S1P accumulation through pharmacologic inhibition of S1P lyase had no effect on the progression of cystogenesis or kidney GSL levels. Together, these data suggest that genes involved in the SL metabolism may be modifiers of cystogenesis, and suggest GM3 synthase as a new anti-cystic therapeutic target.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor)/genetics , Polycystic Kidney Diseases/genetics , Sialyltransferases/genetics , Animals , Disease Models, Animal , Glucosylceramides/metabolism , Glycosphingolipids/metabolism , Mice , Oncogene Protein v-akt/genetics , Oncogene Protein v-akt/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Polycystic Kidney Diseases/enzymology , Sialyltransferases/metabolism , Sphingosine/metabolism , TOR Serine-Threonine Kinases/metabolism
15.
Int J Oncol ; 38(3): 701-11, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21186402

ABSTRACT

Glucosylceramide synthase (GCS) is a key enzyme engaged in the biosynthesis of glycosphingolipids and in regulating ceramide metabolism. Studies exploring alterations in GCS activity suggest that the glycolase may have a role in chemosensitizing tumor cells to various cancer drugs. The chemosensitizing effect of inhibitors of GCS (e.g. PDMP and selected analogues) has been observed with a variety of tumor cells leading to the proposal that the sensitizing activity of GCS inhibitors is primarily through increases in intracellular ceramide leading to induction of apoptosis. The current study examined the chemosensitizing activity of the novel GCS inhibitor, Genz-123346 in cell culture. Exposure of cells to Genz-123346 and to other GCS inhibitors at non-toxic concentrations can enhance the killing of tumor cells by cytotoxic anti-cancer agents. This activity was unrelated to lowering intracellular glycosphingolipid levels. Genz-123346 and a few other GCS inhibitors are substrates for multi-drug resistance efflux pumps such as P-gp (ABCB1, gP-170). In cell lines selected to over-express P-gp or which endogenously express P-gp, chemosensitization by Genz-123346 was primarily due to the effects on P-gp function. RNA interference studies using siRNA or shRNA confirmed that lowering GCS expression in tumor cells did not affect their responsiveness to commonly used cytotoxic drugs.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Dioxanes/pharmacology , Drug Resistance, Neoplasm/drug effects , Glucosyltransferases/antagonists & inhibitors , Neoplasms/drug therapy , Pyrrolidines/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Dioxanes/administration & dosage , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Drug Evaluation, Preclinical , Drug Resistance, Neoplasm/genetics , Drug Synergism , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Hep G2 Cells , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Pyrrolidines/administration & dosage , RNA, Small Interfering/pharmacology , Tumor Cells, Cultured
16.
Mol Genet Metab ; 100(4): 309-15, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20554235

ABSTRACT

Pompe disease, also known as glycogen storage disease (GSD) type II, is caused by deficiency of lysosomal acid alpha-glucosidase (GAA). The resulting glycogen accumulation causes a spectrum of disease severity ranging from a rapidly progressive course that is typically fatal by 1-2years of age to a more slowly progressive course that causes significant morbidity and early mortality in children and adults. Recombinant human GAA (rhGAA) improves clinical outcomes with variable results. Adjunct therapy that increases the effectiveness of rhGAA may benefit some Pompe patients. Co-administration of the mTORC1 inhibitor rapamycin with rhGAA in a GAA knockout mouse reduced muscle glycogen content more than rhGAA or rapamycin alone. These results suggest mTORC1 inhibition may benefit GSDs that involve glycogen accumulation in muscle.


Subject(s)
Glycogen Storage Disease Type II/therapy , Glycogen/biosynthesis , Transcription Factors/antagonists & inhibitors , Aging/drug effects , Aging/pathology , Animals , Dose-Response Relationship, Drug , Enzyme Replacement Therapy , Glycogen Storage Disease Type II/drug therapy , Glycogen Storage Disease Type II/enzymology , Glycogen Synthase/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Multiprotein Complexes , Muscle, Skeletal/drug effects , Muscle, Skeletal/enzymology , Muscle, Skeletal/pathology , Myocardium/metabolism , Myocardium/pathology , Phosphorylation/drug effects , Proteins , Recombinant Proteins/therapeutic use , Sirolimus/analogs & derivatives , Sirolimus/pharmacology , TOR Serine-Threonine Kinases , Transcription Factors/metabolism , alpha-Glucosidases/metabolism , alpha-Glucosidases/therapeutic use
17.
J Clin Invest ; 120(4): 1253-64, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20234094

ABSTRACT

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by a deficiency of survival motor neuron (SMN) due to mutations in the SMN1 gene. In this study, an adeno-associated virus (AAV) vector expressing human SMN (AAV8-hSMN) was injected at birth into the CNS of mice modeling SMA. Western blot analysis showed that these injections resulted in widespread expression of SMN throughout the spinal cord, and this translated into robust improvement in skeletal muscle physiology, including increased myofiber size and improved neuromuscular junction architecture. Treated mice also displayed substantial improvements on behavioral tests of muscle strength, coordination, and locomotion, indicating that the neuromuscular junction was functional. Treatment with AAV8-hSMN increased the median life span of mice with SMA-like disease to 50 days compared with 15 days for untreated controls. Moreover, injecting mice with SMA-like disease with a human SMN-expressing self-complementary AAV vector - a vector that leads to earlier onset of gene expression compared with standard AAV vectors - led to improved efficacy of gene therapy, including a substantial extension in median survival to 157 days. These data indicate that CNS-directed, AAV-mediated SMN augmentation is highly efficacious in addressing both neuronal and muscular pathologies in a severe mouse model of SMA.


Subject(s)
Genetic Therapy , Motor Neurons/physiology , Muscular Atrophy, Spinal/therapy , Survival of Motor Neuron 1 Protein/genetics , Animals , Disease Models, Animal , Humans , Mice , Muscle Strength , Muscle, Skeletal/pathology , Muscular Atrophy, Spinal/mortality , Muscular Atrophy, Spinal/physiopathology , Neurites/metabolism , Neuromuscular Junction/pathology
18.
Exp Cell Res ; 316(2): 258-71, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19732767

ABSTRACT

The PSMD14 (POH1, also known as Rpn11/MPR1/S13/CepP1) protein within the 19S complex (19S cap; PA700) is responsible for substrate deubiquitination during proteasomal degradation. The role of PSMD14 in cell proliferation and senescence was explored using siRNA knockdown in carcinoma cell lines. Our results reveal that down-regulation of PSMD14 by siRNA transfection had a considerable impact on cell viability causing cell arrest in the G0-G1 phase, ultimately leading to senescence. The molecular events associated with decreased cell proliferation, cell cycle arrest and senescence include down-regulation of cyclin B1-CDK1-CDC25C, down-regulation of cyclin D1 and up-regulation of p21(/Cip) and p27(/Kip1). Most notably, phosphorylation of the retinoblastoma protein was markedly reduced in PSMD14 knockdown cells. A comparative study with PSMB5, a subunit of the 20S proteasome, revealed that PSMB5 and PSMD14 have different effects on cell cycle, senescence and associated molecular events. These data support the view that the 19S and 20S subunits of the proteasome have distinct biological functions and imply that targeting 19S and 20S would have distinct molecular consequences on tumor cells.


Subject(s)
Cell Cycle/genetics , Cellular Senescence/genetics , Proteasome Endopeptidase Complex/deficiency , Trans-Activators/deficiency , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival/genetics , Cyclin B1/genetics , Cyclin B1/metabolism , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor Proteins/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , DNA/analysis , Epithelial Cells/cytology , Epithelial Cells/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , G1 Phase/genetics , Gene Expression/genetics , HeLa Cells , Humans , Phosphorylation/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , RNA, Small Interfering/genetics , Resting Phase, Cell Cycle/genetics , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Sulfotransferases/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transfection , Ubiquitinated Proteins/metabolism , Up-Regulation/genetics , beta-Galactosidase/metabolism , cdc25 Phosphatases/genetics , cdc25 Phosphatases/metabolism
19.
Exp Cell Res ; 315(5): 784-94, 2009 Mar 10.
Article in English | MEDLINE | ID: mdl-19094984

ABSTRACT

Netrin-4 is a 628 amino acid basement membrane component that promotes neurite elongation at low concentrations but inhibits neurite extension at high concentrations. There is a growing body of literature suggesting that several molecules, including netrins, are regulators of both neuronal and vascular growth. It is believed that molecules that guide neural growth and development are also involved in regulating morphogenesis of the vascular tree. Further, netrins have recently been implicated in controlling epithelial cell branching morphogenesis in the breast, lung and pancreas. Characterization of purified netrin-4 in in vitro angiogenesis assays demonstrated that netrin-4 markedly inhibits HMVEC migration and tube formation. Moreover, netrin-4 inhibits proliferation of a variety of human tumor cells in vitro. Netrin-4 has only modest effects on proliferation of endothelial and other non-transformed cells. Netrin-4 treatment results in phosphorylation changes of proteins that are known to control cell growth. Specifically, Phospho-Akt-1, Phospho-Jnk-2, and Phospho-c-Jun are reduced in tumor cells that have been treated with netrin-4. Together, these data suggest a potential role for netrin-4 in regulating tumor growth.


Subject(s)
Cell Proliferation , Neoplasms/pathology , Neovascularization, Pathologic/genetics , Nerve Growth Factors/physiology , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Endothelial Cells/drug effects , Endothelial Cells/physiology , Humans , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Neoplasms/blood supply , Neoplasms/genetics , Nerve Growth Factors/genetics , Nerve Growth Factors/pharmacology , Netrins , Oncogene Protein v-akt/antagonists & inhibitors , RNA, Messenger/metabolism , Signal Transduction/drug effects
20.
Prostate ; 67(1): 83-106, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17013881

ABSTRACT

BACKGROUND: A major focus of prostate cancer research has been to identify genes that are deregulated during tumor progression, potentially providing diagnostic markers and therapeutic targets. METHODS: We have employed serial analysis of gene expression (SAGE) and microarray hybridization to identify alterations that occur during malignant transformation in the Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model. Many of these alterations were validated by real-time PCR (rtPCR). RESULTS: We identified several hundred mRNAs that were deregulated. Cluster analysis of microarray profiles with samples from various stages of the disease demonstrated that androgen-independent (AI) primary tumors are similar to metastases; 180 transcripts have expression patterns suggesting an involvement in the genesis of late-stage tumors, and our data support a role for phospholipase A2 group IIA in the acquisition of their highly aggressive characteristics. CONCLUSIONS: Our analyses identified well-characterized genes that were previously known to be involved in prostate cancer, validating our study, and also uncovered transcripts that had not previously been implicated in prostate cancer progression.


Subject(s)
Adenocarcinoma/genetics , Androgens/genetics , Disease Models, Animal , Gene Expression Profiling , Genes, Neoplasm/physiology , Genetic Engineering/methods , Oligonucleotide Array Sequence Analysis , Prostatic Neoplasms/genetics , Adenocarcinoma/metabolism , Androgens/metabolism , Animals , Gene Expression Regulation, Neoplastic/physiology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Prostatic Neoplasms/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...