Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 11: e15962, 2023.
Article in English | MEDLINE | ID: mdl-37790628

ABSTRACT

Declines and extirpations of American pika (Ochotona princeps) populations at historically occupied sites started being documented in the literature during the early 2000s. Commensurate with global climate change, many of these losses at peripheral and lower elevation sites have been associated with changes in ambient air temperature and precipitation regimes. Here, we report on a decline in available genetic resources for an iconic American pika metapopulation, located at the southwestern edge of the species distribution in the Bodie Hills of eastern California, USA. Composed of highly fragmented habitat created by hard rock mining, the ore dumps at this site were likely colonized by pikas around the end of the 19th century from nearby natural talus outcrops. Genetic data extracted from both contemporary samples and archived natural history collections allowed us to track population and patch-level genetic diversity for Bodie pikas across three distinct sampling points during the last half- century (1948-1949, 1988-1991, 2013-2015). Reductions in within-population allelic diversity and expected heterozygosity were observed across the full time period. More extensive sampling of extant patches during the 1988-1991 and 2013-2015 periods revealed an increase in population structure and a reduction in effective population size. Furthermore, census records from the last 51 years as well as archived museum samples collected in 1947 from a nearby pika population in the Wassuk range (Nevada, USA) provide further support of the increasing isolation and genetic coalescence occurring in this region. This study highlights the importance of museum samples and long-term monitoring in contextualizing our understanding of population viability.


Subject(s)
Lagomorpha , Animals , Nevada , Lagomorpha/genetics , Censuses , Ecosystem , Climate Change
2.
Ecol Evol ; 11(23): 17537-17556, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938528

ABSTRACT

For range-restricted species with disjunct populations, it is critical to characterize population genetic structure, gene flow, and factors that influence functional connectivity among populations in order to design effective conservation programs. In this study, we genotyped 314 individuals from 16 extant populations of Ivesia webberi, a United States federally threatened Great Basin Desert using six microsatellite loci. We assessed the effects of Euclidean distance, landscape features, and ecological dissimilarity on the pairwise genetic distance of the sampled populations, while also testing for a potential relationship between I. webberi genetic diversity and diversity in the vegetative communities. The results show low levels of genetic diversity overall (H e = 0.200-0.441; H o = 0.192-0.605) and high genetic differentiation among populations. Genetic diversity was structured along a geographic gradient, congruent with patterns of isolation by distance. Populations near the species' range core have relatively high genetic diversity, supporting in part a central-marginal pattern, while also showing some evidence for a metapopulation dynamic. Peripheral populations have lower genetic diversity, significantly higher genetic distances, and higher relatedness. Genotype cluster admixture results suggest a complex dispersal pattern among populations with dispersal direction and distance varying on the landscape. Pairwise genetic distance strongly correlates with elevation, actual evapotranspiration, and summer seasonal precipitation, indicating a role for isolation by environment, which the observed phenological mismatches among the populations also support. The significant correlation between pairwise genetic distance and floristic dissimilarity in the germinated soil seed bank suggests that annual regeneration in the plant communities contribute to the maintenance of genetic diversity in I. webberi.

3.
Sci Total Environ ; 778: 146102, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33714808

ABSTRACT

Studies have demonstrated that some commercial pet (i.e., cat and dog) food products contain high concentrations of mercury (Hg), and some products have Hg concentrations that are higher than expected based on the ingredients included in the package ingredient list. Additionally, concentrations of methylmercury, a particularly toxic form of Hg commonly associated with fish-based ingredients, are largely unstudied despite the widespread use of such ingredients in pet food products. This study aimed to quantify total Hg and methylmercury in a variety of commercial pet food products (n = 127), and use genetic tools to determine if specific ingredients contributed to high Hg concentrations in the final product. Results indicate that total Hg concentrations were above suggested maximum tolerable limits in three of the tested pet food products, and that methylmercury concentrations were at safe levels in all tested products. Next-generation amplicon sequencing using ten barcode primers was conducted to target distinct taxa and to determine if one primer set outperformed the others in amplifying the often heavily degraded DNA found in pet food products. The 16sUniF_16sUniR primer set generated a relatively higher number of reads across the broadest set of taxa, although several of the primer sets were useful in identifying common animal- and plant-based ingredients in commercial pet food products. Combined with the Hg results, it was demonstrated that pet food product ingredients are consistent among and between product lots. However, these results also revealed that adulteration is prevalent in pet food products.


Subject(s)
Mercury , Methylmercury Compounds , Animal Feed , Animals , Cats , DNA , DNA Barcoding, Taxonomic , Dogs , High-Throughput Nucleotide Sequencing
4.
BMC Ecol Evol ; 21(1): 2, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33514306

ABSTRACT

BACKGROUND: Distributional responses by alpine taxa to repeated, glacial-interglacial cycles throughout the last two million years have significantly influenced the spatial genetic structure of populations. These effects have been exacerbated for the American pika (Ochotona princeps), a small alpine lagomorph constrained by thermal sensitivity and a limited dispersal capacity. As a species of conservation concern, long-term lack of gene flow has important consequences for landscape genetic structure and levels of diversity within populations. Here, we use reduced representation sequencing (ddRADseq) to provide a genome-wide perspective on patterns of genetic variation across pika populations representing distinct subspecies. To investigate how landscape and environmental features shape genetic variation, we collected genetic samples from distinct geographic regions as well as across finer spatial scales in two geographically proximate mountain ranges of eastern Nevada. RESULTS: Our genome-wide analyses corroborate range-wide, mitochondrial subspecific designations and reveal pronounced fine-scale population structure between the Ruby Mountains and East Humboldt Range of eastern Nevada. Populations in Nevada were characterized by low genetic diversity (π = 0.0006-0.0009; θW = 0.0005-0.0007) relative to populations in California (π = 0.0014-0.0019; θW = 0.0011-0.0017) and the Rocky Mountains (π = 0.0025-0.0027; θW = 0.0021-0.0024), indicating substantial genetic drift in these isolated populations. Tajima's D was positive for all sites (D = 0.240-0.811), consistent with recent contraction in population sizes range-wide. CONCLUSIONS: Substantial influences of geography, elevation and climate variables on genetic differentiation were also detected and may interact with the regional effects of anthropogenic climate change to force the loss of unique genetic lineages through continued population extirpations in the Great Basin and Sierra Nevada.


Subject(s)
Genome-Wide Association Study , Lagomorpha , Animals , Gene Flow , Genomics , Geography , Lagomorpha/genetics , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...